如圖,等邊△ABC內(nèi)接于⊙O,P是
AB
上任一點(點P不與點A、B重合),連AP、BP,過點C作C精英家教網(wǎng)M∥BP交PA的延長線于點M.
(1)填空:∠APC=
 
度,∠BPC=
 
度;
(2)求證:△ACM≌△BCP;
(3)若PA=1,PB=2,求梯形PBCM的面積.
分析:(1)利用同弧所對的圓周角相等即可求得題目中的未知角;
(2)利用上題中得到的相等的角和等邊三角形中相等的線段證得兩三角形全等即可;
(3)利用上題證得的兩三角形全等判定△PCM為等邊三角形,進而求得PH的長,利用梯形的面積公式計算梯形的面積即可.
解答:精英家教網(wǎng)(1)解:∠APC=60°,∠BPC=60°;

(2)證明:∵CM∥BP,
∴∠BPM+∠M=180°,
∠PCM=∠BPC,
∵∠BPC=∠BAC=60°,
∴∠PCM=∠BPC=60°,
∴∠M=180°-∠BPM=180°-(∠APC+∠BPC)=180°-120°=60°,
∴∠M=∠BPC=60°,
又∵A、P、B、C四點共圓,
∴∠PAC+∠PBC=180°,
∵∠MAC+∠PAC=180°
∴∠MAC=∠PBC
∵AC=BC,
∴△ACM≌△BCP;

(3)解:作PH⊥CM于H,
∵△ACM≌△BCP,
∴CM=CP  AM=BP,
又∠M=60°,
∴△PCM為等邊三角形,
∴CM=CP=PM=PA+AM=PA+PB=1+2=3,

在Rt△PMH中,∠MPH=30°,
∴PH=
3
2
3
,
∴S梯形PBCM=
1
2
(PB+CM)×PH=
1
2
(2+3)×
3
3
2
=
15
4
3
點評:本題考查了圓周角定理、等邊三角形的判定、全等三角形的性質(zhì)及梯形的面積計算方法,是一道比較復(fù)雜的幾何綜合題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,等邊△ABC內(nèi)接于⊙O,點P是劣弧
BC
上的一點(端點除外),延長BP至D,使BD=AP,連接CD.
(1)若AP過圓心O,如圖①,請你判斷△PDC是什么三角形?并說精英家教網(wǎng)明理由;
(2)若AP不過圓心O,如圖②,△PDC又是什么三角形?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,等邊△ABC內(nèi)接于⊙O,動點P在劣弧AB上,且不與A、B重合,則∠BPC等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,等邊△ABC內(nèi)接于⊙O,以O(shè)為旋轉(zhuǎn)中心,能使旋轉(zhuǎn)后的圖形與原圖形重合.下列符合條件的旋轉(zhuǎn)角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•葫蘆島)如圖,等邊△ABC內(nèi)接于⊙O,則∠AOB等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等邊△ABC內(nèi)接于⊙O,BD切⊙O于B,AD⊥BD于D,AD交⊙O于E,⊙O的半徑為1,則AE的長為( 。

查看答案和解析>>

同步練習(xí)冊答案