科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(江蘇鹽城卷)數(shù)學(xué)(帶解析) 題型:解答題
知識遷移
當(dāng)且時,因為≥,所以≥,從而≥(當(dāng)時取等號).
記函數(shù),由上述結(jié)論可知:當(dāng)時,該函數(shù)有最小值為
直接應(yīng)用
已知函數(shù)與函數(shù), 則當(dāng)____時,取得最小值為___.
變形應(yīng)用
已知函數(shù)與函數(shù),求的最小值,并指出取得
該最小值時相應(yīng)的的值.
實際應(yīng)用
已知某汽車的一次運輸成本包含以下三個部分:一是固定費用,共元;二是燃油費,每千
米為元;三是折舊費,它與路程的平方成正比,比例系數(shù)為.設(shè)該汽車一次運輸?shù)穆?br />程為千米,求當(dāng)為多少時,該汽車平均每千米的運輸成本最低?最低是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇鹽城第一初級中學(xué)九年級下學(xué)期期中考試數(shù)學(xué)卷(帶解析) 題型:解答題
(本題滿分12分)
問題情境
已知矩形的面積為a(a為常數(shù),a>0),當(dāng)該矩形的長為多少時,它的周長最小?最小值是多少?
數(shù)學(xué)模型
設(shè)該矩形的長為x,周長為y,則y與x的函數(shù)關(guān)系式為.
探索研究
⑴我們可以借鑒以前研究函數(shù)的經(jīng)驗,先探索函數(shù)的圖象性質(zhì).
① 填寫下表,畫出函數(shù)的圖象:
x | … | 1 | 2 | 3 | 4 | … | |||
y | … | | | | | | | | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(江蘇鹽城卷)數(shù)學(xué)(解析版) 題型:解答題
知識遷移
當(dāng)且時,因為≥,所以≥,從而≥(當(dāng)時取等號).
記函數(shù),由上述結(jié)論可知:當(dāng)時,該函數(shù)有最小值為
直接應(yīng)用
已知函數(shù)與函數(shù), 則當(dāng)____時,取得最小值為___.
變形應(yīng)用
已知函數(shù)與函數(shù),求的最小值,并指出取得
該最小值時相應(yīng)的的值.
實際應(yīng)用
已知某汽車的一次運輸成本包含以下三個部分:一是固定費用,共元;二是燃油費,每千
米為元;三是折舊費,它與路程的平方成正比,比例系數(shù)為.設(shè)該汽車一次運輸?shù)穆?/p>
程為千米,求當(dāng)為多少時,該汽車平均每千米的運輸成本最低?最低是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:江蘇中考真題 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
知識遷移
當(dāng)且時,因為≥,所以≥,
從而≥(當(dāng)時取等號).
記函數(shù),由上述結(jié)論可知:當(dāng)時,該函數(shù)有最小值為.
直接應(yīng)用
已知函數(shù)與函數(shù), 則當(dāng)_________時,取得最小值為_________.
變形應(yīng)用
已知函數(shù)與函數(shù),求的最小值,并指出取得該最小值時相應(yīng)的的值.
實際應(yīng)用
已知某汽車的一次運輸成本包含以下三個部分:一是固定費用,共元;二是燃油費,每千米為元;三是折舊費,它與路程的平方成正比,比例系數(shù)為.設(shè)該汽車一次運輸?shù)穆烦虨?sub>千米,求當(dāng)為多少時,該汽車平均每千米的運輸成本最低?最低是多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com