C、D是線段AB上順次兩點(diǎn),E是AC的中點(diǎn),F(xiàn)是BD的中點(diǎn),若EF=m,CD=n,則AB的長為

[  ]

A.m-n

B.2m-n

C.m+n

D.2(m-n)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•如東縣模擬)以平面上一點(diǎn)O為直角頂點(diǎn),分別畫出兩個(gè)直角三角形,記作△AOB和△COD,其中∠ABO=∠DCO=30°.
(1)點(diǎn)E、F、M分別是AC、CD、DB的中點(diǎn),連接FM、EM.
①如圖1,當(dāng)點(diǎn)D、C分別在AO、BO的延長線上時(shí),
FM
EM
=
3
2
3
2
;
②如圖2,將圖1中的△AOB繞點(diǎn)O沿順時(shí)針方向旋轉(zhuǎn)α角(0°<α<60°),其他條件不變,判斷
FM
EM
的值是否發(fā)生變化,并對(duì)你的結(jié)論進(jìn)行證明;
(2)如圖3,若BO=3
3
,點(diǎn)N在線段OD上,且NO=2.點(diǎn)P是線段AB上的一個(gè)動(dòng)點(diǎn),在將△AOB繞點(diǎn)O旋轉(zhuǎn)的過程中,線段PN長度的最小值為
3
2
3
-2
3
2
3
-2
,最大值為
3
3
+2
3
3
+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知點(diǎn)P是線段AB上的動(dòng)點(diǎn)(P不與A,B重合),分別以AP、PB為邊向線段AB的同一側(cè)作正△APC和正△PBD.
(1)求證:△APD≌△CPB.
(2)如圖2,若點(diǎn)P固定,將△PBD繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于90°),這種情況“△APD≌△CPB”的結(jié)論還成立嗎?請(qǐng)說明理由.
(3)如圖1,設(shè)∠AQC=α,求α的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•房山區(qū)一模)已知:如圖,點(diǎn)P是線段AB上的動(dòng)點(diǎn),分別以AP、BP為邊向線段AB的同側(cè)作正△APC和正△BPD,AD和BC交于點(diǎn)M.
(1)當(dāng)△APC和△BPD面積之和最小時(shí),直接寫出AP:PB的值和∠AMC的度數(shù);
(2)將點(diǎn)P在線段AB上隨意固定,再把△BPD按順時(shí)針方向繞點(diǎn)P旋轉(zhuǎn)一個(gè)角度α,當(dāng)α<60°時(shí),旋轉(zhuǎn)過程中,∠AMC的度數(shù)是否發(fā)生變化?證明你的結(jié)論.
(3)在第(2)小題給出的旋轉(zhuǎn)過程中,若限定60°<α<120°,∠AMC的大小是否會(huì)發(fā)生變化?若變化,請(qǐng)寫出∠AMC的度數(shù)變化范圍;若不變化,請(qǐng)寫出∠AMC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角梯形ABCD中,AB∥CD,∠A=90°,∠B=45°,AB=4
2
,BC=3,F(xiàn)是DC上一點(diǎn),且CF=
2
,E,是線段AB上一動(dòng)點(diǎn),將射線EF繞點(diǎn)E順時(shí)針旋轉(zhuǎn)45°交BC邊于點(diǎn)G.
(1)直接寫出線段AD和CD的長;
(2)設(shè)AE=x,當(dāng)x為何值時(shí)△BEG是等腰三角形;
(3)當(dāng)△BEG是等腰三角形時(shí),將△BEG沿EG折疊,得到△B′EG,求△B′EG與五邊形AEGCD重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,已知點(diǎn)P是線段AB上的動(dòng)點(diǎn)(P不與A,B重合),分別以AP、PB為邊向線段AB的同一側(cè)作等邊△APC和等邊△PBD.連接AD、BC,相交于點(diǎn)Q,AD交CP于點(diǎn)E,BC交PD于點(diǎn)F
(1)圖1中有
3
3
對(duì)全等三角形;(不必證明)
(2)圖1中設(shè)∠AQC=α,那么α=
60
60
°;(不必證明)
(3)如圖2,若點(diǎn)P固定,將△PBD繞點(diǎn)P按順時(shí)針方向旋轉(zhuǎn)(旋轉(zhuǎn)角小于180°),此時(shí)α的大小是否發(fā)生變化?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案