如圖,等腰△AEF的腰長(zhǎng)與菱形ABCD的邊長(zhǎng)相等,其底邊上的點(diǎn)E、F分別在BC、CD上,若∠EAF=63°,則∠B=    度.
【答案】分析:由等腰△AEF的腰長(zhǎng)與菱形ABCD的邊長(zhǎng)相等,可得AB=AE=AD=AF,∠B=∠D,BC∥AD,由等邊對(duì)等角,可得∠AEB=∠B,∠AFD=∠D,然后設(shè)∠B=x°,由三角形內(nèi)角和定理與平行線(xiàn)的性質(zhì)可得方程x+180-2x+63+180-2x=180,解此方程即可求得答案.
解答:解:∵等腰△AEF的腰長(zhǎng)與菱形ABCD的邊長(zhǎng)相等,
∴AB=AE=AD=AF,∠B=∠D,BC∥AD,
∴∠AEB=∠B,∠AFD=∠D,
設(shè)∠B=x°,
則∠AEB=∠AFD=∠D=x°,
∴∠BAE=∠DAF=180°-2x°,
∵∠EAF=63°,
∴∠B+∠BAD=180°,
即x+180-2x+63+180-2x=180,
解得:x=81,
∴∠B=81°.
故答案為:81.
點(diǎn)評(píng):此題考查了菱形的性質(zhì)、等腰三角形的性質(zhì)、平行線(xiàn)的性質(zhì)以及三角形內(nèi)角和定理.此題難度適中,注意掌握方程思想與數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•工業(yè)園區(qū)一模)如圖,等腰△AEF的腰長(zhǎng)與菱形ABCD的邊長(zhǎng)相等,其底邊上的點(diǎn)E、F分別在BC、CD上,若∠EAF=63°,則∠B=
81
81
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖,等腰△ABC中,AB=BC,AE⊥BC于E,EF⊥AB于F,cos∠AEF=
45

(1)當(dāng)BE=4時(shí),求EF長(zhǎng).
(2)若CE=2,求EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,等腰△AEF的腰長(zhǎng)與菱形ABCD的邊長(zhǎng)相等,其底邊上的點(diǎn)E、F分別在BC、CD上,若∠EAF=63°,則∠B=________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年江蘇省蘇州市工業(yè)園區(qū)星灣學(xué)校中考數(shù)學(xué)模擬試卷(解析版) 題型:填空題

如圖,等腰△AEF的腰長(zhǎng)與菱形ABCD的邊長(zhǎng)相等,其底邊上的點(diǎn)E、F分別在BC、CD上,若∠EAF=63°,則∠B=    度.

查看答案和解析>>

同步練習(xí)冊(cè)答案