作業(yè)寶如圖,若AC=12,BC=7,AB的垂直平分線交AB于E,交AC于D,求△BCD的周長(zhǎng)是________.

19
分析:根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等可得AD=BD,然后求出△BCD的周長(zhǎng)=AC+BC.
解答:∵DE是AB的垂直平分線,
∴AD=BD,
∴△BCD的周長(zhǎng)=BD+CD+BC=AD+CD+BC=AC+BC,
∵AC=12,BC=7,
∴△BCD的周長(zhǎng)=12+7=19.
故答案為:19.
點(diǎn)評(píng):本題考查了線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,Rt△ABC和Rt△DEC中,∠ACB=∠DCE=90°,邊AB和DE在同一直線上,且BC=BD.
(1)找出圖中相似的三角形,并證明你的結(jié)論;
(2)若AC=12,BC=5,求tanE的值;
(3)點(diǎn)P為BC上一動(dòng)點(diǎn)(不與B、C重合如圖2),分別過(guò)P作PM⊥DE于M,PN⊥BC,PN交CE于N.在(2)的條件下,設(shè)PC=x,則是否存在這樣的x值,使得△PMN是等腰三角形?若存在,直接寫(xiě)出x的值,并指出相等的邊;若不存在,說(shuō)明理由.精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為6的正方形ABCD中,點(diǎn)P為AB上一動(dòng)點(diǎn),連接DB、DP,AE⊥DP于E.
(1)如圖①,若P為AB的中點(diǎn),則
BF
DF
=
 
BF
AC
=
 
;
(2)如圖②,若
AP
BP
=
1
2
時(shí),證明AC=4BF;
(3)如圖③,若P在BA的延長(zhǎng)線上,當(dāng)
BF
AC
=
 
時(shí),
AP
AB
=
1
3

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•寧波)若一個(gè)四邊形的一條對(duì)角線把四邊形分成兩個(gè)等腰三角形,我們把這條對(duì)角線叫這個(gè)四邊形的和諧線,這個(gè)四邊形叫做和諧四邊形.如菱形就是和諧四邊形.
(1)如圖1,在梯形ABCD中,AD∥BC,∠BAD=120°,∠C=75°,BD平分∠ABC.求證:BD是梯形ABCD的和諧線;
(2)如圖2,在12×16的網(wǎng)格圖上(每個(gè)小正方形的邊長(zhǎng)為1)有一個(gè)扇形BAC,點(diǎn)A.B.C均在格點(diǎn)上,請(qǐng)?jiān)诖痤}卷給出的兩個(gè)網(wǎng)格圖上各找一個(gè)點(diǎn)D,使得以A、B、C、D為頂點(diǎn)的四邊形的兩條對(duì)角線都是和諧線,并畫(huà)出相應(yīng)的和諧四邊形;
(3)四邊形ABCD中,AB=AD=BC,∠BAD=90°,AC是四邊形ABCD的和諧線,求∠BCD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,若AC=12,BC=7,AB的垂直平分線交AB于E,交AC于D,求△BCD的周長(zhǎng)是
19
19

查看答案和解析>>

同步練習(xí)冊(cè)答案