實踐與探索:
㈠小明在玩積木游戲時,把三個正方形積木擺成一定的形狀,正視圖如圖①,
問題(1):若此中的三角形△DEF為直角三角形,P的面積為9,Q的面積為15,則M的面積為_______。
問題(2):若P的面積為36cm2,Q的面積為64 cm2,同時M的面積為100 cm2,則△DEF為_______三角形。
㈡圖形變化:Ⅰ.如圖②,分別以直角三角形的三邊為直徑向三角形外作三個半圓,你能找出這三個半圓的面積之間有什么關(guān)系嗎?請說明理由。
Ⅱ.如圖③,如果直角三角形兩直角邊的長分別為3和4,以直角三角形的三邊為直徑作半圓,你能利用上面中的結(jié)論求出陰影部分的面積嗎?
(一)(1)24,(2)直角; (二) I: ,Ⅱ:S陰=6
【解析】
試題分析:(1)根據(jù)正方形的面積公式結(jié)合勾股定理就可發(fā)現(xiàn)大正方形的面積是兩個小正方形的面積和;
(2)分別表示出,,,結(jié)合勾股定理即可得出關(guān)系式.
(3)根據(jù)半圓的面積公式以及勾股定理就可發(fā)現(xiàn):兩個小半圓的面積和等于大半圓的面積,從而得出陰影部分的面積=直角三角形的面積.
(1)由題意得,,,
則;
(2),,,
,
∴;
(3)設(shè)直角三角形的邊從小到大分別是a,b,c,則,兩邊同除以,
即得:兩小半圓的面積和等于大半圓的面積,
從而得出陰影部分的面積=直角三角形的面積=
考點:本題考查了勾股定理,正方形的性質(zhì),圓的面積公式
點評:解答本題的關(guān)鍵是由兩個小半圓的面積和等于大半圓的面積,得出陰影部分的面積等于直角三角形的面積.
科目:初中數(shù)學(xué) 來源: 題型:
2 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
10 |
3 |
10 |
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||
B、3 | ||
C、4 | ||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(浙江衢州卷)數(shù)學(xué)(帶解析) 題型:解答題
課本中,把長與寬之比為的矩形紙片稱為標(biāo)準(zhǔn)紙.請思考解決下列問題:
(1)將一張標(biāo)準(zhǔn)紙ABCD(AB<BC)對開,如圖1所示,所得的矩形紙片ABEF是標(biāo)準(zhǔn)紙.請給予證明.
(2)在一次綜合實踐課上,小明嘗試著將矩形紙片ABCD(AB<BC)進行如下操作:
第一步:沿過A點的直線折疊,使B點落在AD邊上點F處,折痕為AE(如圖2甲);
第二步:沿過D點的直線折疊,使C點落在AD邊上點N處,折痕為DG(如圖2乙),此時E點恰好落在AE邊上的點M處;
第三步:沿直線DM折疊(如圖2丙),此時點G恰好與N點重合.
請你探究:矩形紙片ABCD是否是一張標(biāo)準(zhǔn)紙?請說明理由.
(3)不難發(fā)現(xiàn):將一張標(biāo)準(zhǔn)紙按如圖3一次又一次對開后,所得的矩形紙片都是標(biāo)準(zhǔn)紙.現(xiàn)有一張標(biāo)準(zhǔn)紙ABCD,AB=1,BC=,問第5次對開后所得標(biāo)準(zhǔn)紙的周長是多少?探索直接寫出第2012次對開后所得標(biāo)準(zhǔn)紙的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇揚州江都麾村中學(xué)八年級第一次月考數(shù)學(xué)試題(帶解析) 題型:解答題
實踐與探索:
㈠小明在玩積木游戲時,把三個正方形積木擺成一定的形狀,正視圖如圖①,
問題(1):若此中的三角形△DEF為直角三角形,P的面積為9,Q的面積為15,則M的面積為_______。
問題(2):若P的面積為36cm2,Q的面積為64 cm2,同時M的面積為100 cm2,則△DEF為_______三角形。
㈡圖形變化:Ⅰ.如圖②,分別以直角三角形的三邊為直徑向三角形外作三個半圓,你能找出這三個半圓的面積之間有什么關(guān)系嗎?請說明理由。
Ⅱ.如圖③,如果直角三角形兩直角邊的長分別為3和4,以直角三角形的三邊為直徑作半圓,你能利用上面中的結(jié)論求出陰影部分的面積嗎?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com