在直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(0,
3
),B(-1,0),C(1,0).
(1)△ABC為
 
三角形.
(2)若△ABC三個(gè)頂點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)分別加3,則所得的圖形與原來的三角形相比,主要的變化是
 
分析:(1)由坐標(biāo)關(guān)系可得三角形的三邊都相等,所以可得其為等邊三角形;
(2)將三角形橫坐標(biāo)分別加3,相當(dāng)于將三角形向右平移3,所得三角形與原三角形全等.
解答:精英家教網(wǎng)解:(1)如圖,
由題中條件可得,BC=2,OA=
3
,OB=OC=1,
∴AB=AC=2=BC,
∴△ABC是等邊三角形;

(2)如上圖,若將△ABC三個(gè)頂點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)分別加3,
則所得的圖形與原來的三角形全等,只不過相當(dāng)于將△ABC向右平移3.
點(diǎn)評:本題主要考查了等邊三角形的判定以及坐標(biāo)與圖形相結(jié)合的問題,能夠?qū)⑹炀毜貙D形與坐標(biāo)聯(lián)系起來,從而解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系中,已知直線y=kx+6與x軸、y軸分別交于A、B兩點(diǎn),且△ABO的面積為12.
(1)求k的值;
(2)若P為直線AB上一動(dòng)點(diǎn),P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),△PAO是以O(shè)A為底的等腰三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,連接PO,△PBO是等腰三角形嗎如果是,試說明理由,如果不是,請?jiān)诰段AB上求一點(diǎn)C,使得△CBO是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,-4),C(0,1),過點(diǎn)C作直線DC交x軸于點(diǎn)D,使得以D、C、O為頂點(diǎn)的三角形與△AOB相似,這樣的直線一共可以作出(  )
A、1條B、2條C、3條D、4條

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•從化市一模)如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-4,0),B(0,3),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形(1)、(2)、(3)、(4)、…,那么第(7)個(gè)三角形的直角頂點(diǎn)的坐標(biāo)是
(24,0)
(24,0)
,第(2013)的直角頂點(diǎn)的坐標(biāo)是
(8052,0)
(8052,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(-3,0),B(0,4),對△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到三角形①、②、③、④…,則三角形精英家教網(wǎng)的直角頂點(diǎn)的坐標(biāo)為
 

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,已知點(diǎn)A(0,
3
)、B(3,0),以AB為一邊作等邊△ABC,且點(diǎn)C在第一象限.則點(diǎn)C的坐標(biāo)是
(3,2
3
(3,2
3
,若G是△ABC的重心,則G的坐標(biāo)是
(2,
3
(2,
3

查看答案和解析>>

同步練習(xí)冊答案