(2007•大連)已知拋物線y=ax2+x+2.
(1)當(dāng)a=-1時(shí),求此拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(2)若代數(shù)式-x2+x+2的值為正整數(shù),求x的值;
(3)當(dāng)a=a1時(shí),拋物線y=ax2+x+2與x軸的正半軸相交于點(diǎn)M(m,0);當(dāng)a=a2時(shí),拋物線y=ax2+x+2與x軸的正半軸相交于點(diǎn)N(n,0).若點(diǎn)M在點(diǎn)N的左邊,試比較a1與a2的大小.
【答案】分析:(1)將a的值代入拋物線中,即可求出拋物線的解析式,用配方法或公式法可求出拋物線的頂點(diǎn)坐標(biāo)和對(duì)稱軸解析式.
(2)可先得出y的值,然后解方程求解即可.
(3)可將M、N的坐標(biāo)分別代入拋物線中,得出a1、a2的表達(dá)式,然后令a1-a2進(jìn)行判斷即可.
解答:解:(1)當(dāng)a=-1時(shí),y=-x2+x+2=-(x-2+
∴拋物線的頂點(diǎn)坐標(biāo)為:(,),對(duì)稱軸為x=;

(2)∵代數(shù)式-x2+x+2的值為正整數(shù),
-x2+x+2=-(x-2+2≤2
∴-x2+x+2=1,解得x=,
或-x2+x+2=2,解得x=0或1.
∴x的值為,,0,1;

(3)將M代入拋物線的解析式中可得:a1m2+m+2=0;
∴a1=
同理可得a2=-;
a1-a2=
∵m在n的左邊,
∴m-n<0,
∵0<m<n,
∴a1-a2=<0,
∴a1<a2
點(diǎn)評(píng):本題主要考查二次函數(shù)的相關(guān)知識(shí).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2007•大連)已知拋物線y=ax2+bx+c經(jīng)過P(,3),E(,0)及原點(diǎn)O(0,0).
(1)求拋物線的解析式;
(2)過P點(diǎn)作平行于x軸的直線PC交y軸于C點(diǎn),在拋物線對(duì)稱軸右側(cè)且位于直線PC下方的拋物線上,任取一點(diǎn)Q,過點(diǎn)Q作直線QA平行于y軸交x軸于A點(diǎn),交直線PC于B點(diǎn),直線QA與直線PC及兩坐標(biāo)軸圍成矩形OABC(如圖).是否存在點(diǎn)Q,使得△OPC與△PQB相似?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)如果符合(2)中的Q點(diǎn)在x軸的上方,連接OQ,矩形OABC內(nèi)的四個(gè)三角形△OPC,△PQB,△OQP,△OQA之間存在怎樣的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2007•大連)已知拋物線y=ax2+bx+c經(jīng)過P(,3),E(,0)及原點(diǎn)O(0,0).
(1)求拋物線的解析式;
(2)過P點(diǎn)作平行于x軸的直線PC交y軸于C點(diǎn),在拋物線對(duì)稱軸右側(cè)且位于直線PC下方的拋物線上,任取一點(diǎn)Q,過點(diǎn)Q作直線QA平行于y軸交x軸于A點(diǎn),交直線PC于B點(diǎn),直線QA與直線PC及兩坐標(biāo)軸圍成矩形OABC(如圖).是否存在點(diǎn)Q,使得△OPC與△PQB相似?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)如果符合(2)中的Q點(diǎn)在x軸的上方,連接OQ,矩形OABC內(nèi)的四個(gè)三角形△OPC,△PQB,△OQP,△OQA之間存在怎樣的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年遼寧省大連市旅順口區(qū)中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•大連)已知拋物線y=ax2+bx+c經(jīng)過P(,3),E(,0)及原點(diǎn)O(0,0).
(1)求拋物線的解析式;
(2)過P點(diǎn)作平行于x軸的直線PC交y軸于C點(diǎn),在拋物線對(duì)稱軸右側(cè)且位于直線PC下方的拋物線上,任取一點(diǎn)Q,過點(diǎn)Q作直線QA平行于y軸交x軸于A點(diǎn),交直線PC于B點(diǎn),直線QA與直線PC及兩坐標(biāo)軸圍成矩形OABC(如圖).是否存在點(diǎn)Q,使得△OPC與△PQB相似?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)如果符合(2)中的Q點(diǎn)在x軸的上方,連接OQ,矩形OABC內(nèi)的四個(gè)三角形△OPC,△PQB,△OQP,△OQA之間存在怎樣的關(guān)系,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年湖南省郴州市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2007•大連)已知拋物線y=ax2+bx+c經(jīng)過P(,3),E(,0)及原點(diǎn)O(0,0).
(1)求拋物線的解析式;
(2)過P點(diǎn)作平行于x軸的直線PC交y軸于C點(diǎn),在拋物線對(duì)稱軸右側(cè)且位于直線PC下方的拋物線上,任取一點(diǎn)Q,過點(diǎn)Q作直線QA平行于y軸交x軸于A點(diǎn),交直線PC于B點(diǎn),直線QA與直線PC及兩坐標(biāo)軸圍成矩形OABC(如圖).是否存在點(diǎn)Q,使得△OPC與△PQB相似?若存在,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)如果符合(2)中的Q點(diǎn)在x軸的上方,連接OQ,矩形OABC內(nèi)的四個(gè)三角形△OPC,△PQB,△OQP,△OQA之間存在怎樣的關(guān)系,為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案