(2010•河南)(1)操作發(fā)現(xiàn):
如圖,矩形ABCD中,E是AD的中點(diǎn),將△ABE沿BE折疊后得到△GBE,且點(diǎn)G在矩形ABCD內(nèi)部.小明將BG延長交DC于點(diǎn)F,認(rèn)為GF=DF,你同意嗎?說明理由.
(2)問題解決:
保持(1)中的條件不變,若DC=2DF,求的值;
(3)類比探求:
保持(1)中條件不變,若DC=nDF,求的值.

【答案】分析:(1)求簡單的線段相等,可證線段所在的三角形全等,即連接EF,證△EGF≌△EDF即可;
(2)可設(shè)DF=x,BC=y;進(jìn)而可用x表示出DC、AB的長,根據(jù)折疊的性質(zhì)知AB=BG,即可得到BG的表達(dá)式,由(1)證得GF=DF,那么GF=x,由此可求出BF的表達(dá)式,進(jìn)而可在Rt△BFC中,根據(jù)勾股定理求出x、y的比例關(guān)系,即可得到的值;
(3)方法同(2).
解答:解:(1)同意,連接EF,
則根據(jù)翻折不變性得,
∠EGF=∠D=90°,EG=AE=ED,EF=EF,
∴Rt△EGF≌Rt△EDF,
∴GF=DF;

(2)由(1)知,GF=DF,設(shè)DF=x,BC=y,則有GF=x,AD=y
∵DC=2DF,
∴CF=x,DC=AB=BG=2x,
∴BF=BG+GF=3x;
在Rt△BCF中,BC2+CF2=BF2,即y2+x2=(3x)2
∴y=2x,
;

(3)由(1)知,GF=DF,設(shè)DF=x,BC=y,則有GF=x,AD=y
∵DC=n•DF,
∴BF=BG+GF=(n+1)x
在Rt△BCF中,BC2+CF2=BF2,即y2+[(n-1)x]2=[(n+1)x]2
∴y=2x

點(diǎn)評:此題考查了矩形的性質(zhì)、圖形的折疊變換、全等三角形的判定和性質(zhì)、勾股定理的應(yīng)用等重要知識,難度適中.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•河南)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(-4,0),B(0,-4),C(2,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S、求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點(diǎn)P是拋物線上的動點(diǎn),點(diǎn)Q是直線y=-x上的動點(diǎn),判斷有幾個位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《反比例函數(shù)》(06)(解析版) 題型:解答題

(2010•河南)如圖,直線y=k1x+b與反比例函數(shù)(x>0)的圖象交于A(1,6),B(a,3)兩點(diǎn).
(1)求k1、k2的值.
(2)直接寫出時x的取值范圍;
(3)如圖,等腰梯形OBCD中,BC∥OD,OB=CD,OD邊在x軸上,過點(diǎn)C作CE⊥OD于點(diǎn)E,CE和反比例函數(shù)的圖象交于點(diǎn)P,當(dāng)梯形OBCD的面積為12時,請判斷PC和PE的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(07)(解析版) 題型:解答題

(2010•河南)如圖,直線y=k1x+b與反比例函數(shù)(x>0)的圖象交于A(1,6),B(a,3)兩點(diǎn).
(1)求k1、k2的值.
(2)直接寫出時x的取值范圍;
(3)如圖,等腰梯形OBCD中,BC∥OD,OB=CD,OD邊在x軸上,過點(diǎn)C作CE⊥OD于點(diǎn)E,CE和反比例函數(shù)的圖象交于點(diǎn)P,當(dāng)梯形OBCD的面積為12時,請判斷PC和PE的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年河南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•河南)在平面直角坐標(biāo)系中,已知拋物線經(jīng)過A(-4,0),B(0,-4),C(2,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S、求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
(3)若點(diǎn)P是拋物線上的動點(diǎn),點(diǎn)Q是直線y=-x上的動點(diǎn),判斷有幾個位置能夠使得點(diǎn)P、Q、B、O為頂點(diǎn)的四邊形為平行四邊形,直接寫出相應(yīng)的點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年河南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•河南)如圖,直線y=k1x+b與反比例函數(shù)(x>0)的圖象交于A(1,6),B(a,3)兩點(diǎn).
(1)求k1、k2的值.
(2)直接寫出時x的取值范圍;
(3)如圖,等腰梯形OBCD中,BC∥OD,OB=CD,OD邊在x軸上,過點(diǎn)C作CE⊥OD于點(diǎn)E,CE和反比例函數(shù)的圖象交于點(diǎn)P,當(dāng)梯形OBCD的面積為12時,請判斷PC和PE的大小關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案