【題目】如圖,已知A,B兩點的坐標分別為(40,0)和(0,30),動點P從點A開始在線段AO上以每秒2個長度單位的速度向原點O運動、動直線EF從x軸開始以每1個單位的速度向上平行移動(即EF∥x軸),并且分別與y軸、線段AB交于點E,F(xiàn),連接EP,F(xiàn)P,設動點P與動直線EF同時出發(fā),運動時間為t秒.
(1)求t=15時,△PEF的面積;
(2)直線EF、點P在運動過程中,是否存在這樣的t,使得△PEF的面積等于160(平方單位)?若存在,請求出此時t的值;若不存在,請說明理由.
(3)當t為何值時,△EOP與△BOA相似.
【答案】
(1)解:∵EF∥OA,
∴∠BEF=∠BOA
又∵∠B=∠B,
∴△BEF∽△BOA,
∴
當t=15時,OE=BE=15,OA=40,OB=30,
∴
∴S△PEF= EFOE= (平方單位)
(2)解:∵△BEF∽△BOA,
∴
∴
整理,得t2﹣30t+240=0
∵△=302﹣4×1×240=﹣60<0,∴方程沒有實數(shù)根.
∴不存在使得△PEF的面積等于160(平方單位)的t值
(3)解:當∠EPO=∠BAO時,△EOP∽△BOA
∴ ,即
解得,t=12(11分)
當∠EPO=∠ABO時,△EOP∽△AOB
∴ ,即
解得,
∴當t=12或 時,△EOP∽△BOA
【解析】(1)由于EF∥x軸,則S△PEF= EFOE.t=15時,OE=15,關鍵是求EF.易證△BEF∽△BOA,則 ,從而求出EF的長度,得出△PEF的面積;(2)假設存在這樣的t,使得△PEF的面積等于160,則根據(jù)面積公式列出方程,由根的判別式進行判斷,得出結論;(3)如果△EOP與△BOA相似,由于∠EOP=∠BOA=90°,則只能點O與點O對應,然后分兩種情況分別討論:①點P與點A對應;②點P與點B對應.
【考點精析】根據(jù)題目的已知條件,利用求根公式和相似三角形的判定與性質的相關知識可以得到問題的答案,需要掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當△>0時,一元二次方程有2個不相等的實數(shù)根2、當△=0時,一元二次方程有2個相同的實數(shù)根3、當△<0時,一元二次方程沒有實數(shù)根;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.“任意畫一個三角形,其內(nèi)角和是360°”是隨機事件
B.“明天的降水概率為80%”,意味著明天降雨的可能性較大
C.“某彩票中獎概率是1%”,表示買100張這種彩票一定會中獎
D.曉芳拋一枚硬幣10次,有7次正面朝上,當她拋第11次時,正面向上的概率為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為測量一座山峰CF的高度,將此山的某側山坡劃分為AB和BC兩段,每一段山坡近似是“直”的,測得坡長AB=800米,BC=200米,坡角∠BAF=30°,∠CBE=45°.
(1)求AB段山坡的高度EF;
(2)求山峰的高度CF.( 1.414,CF結果精確到米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a>0)的頂點為M,直線y=m與x軸平行,且與拋物線交于點A,B,若△AMB為等腰直角三角形,我們把拋物線上A,B兩點之間的部分與線段AB圍成的圖形稱為該拋物線對應的準碟形,線段AB稱為碟寬,頂點M稱為碟頂,點M到線段AB的劇烈為碟高.
(1)拋物線y=x2對應的碟寬為;拋物線y= x2對應的碟寬為;拋物線y=ax2(a>0)對應的碟寬為;拋物線y=a(x﹣3)2+2(a>0)對應的碟寬為;
(2)利用圖(1)中的結論:拋物線y=ax2﹣4ax﹣ (a>0)對應的碟寬為6,求拋物線的解析式.
(3)將拋物線yn=anx2+bnx+cn(an>0)的對應準蝶形記為Fn(n=1,2,3,…),定義F1 , F2 , …..Fn為相似準蝶形,相應的碟寬之比即為相似比.若Fn與Fn﹣1的相似比為 ,且Fn的碟頂是Fn﹣1的碟寬的中點,現(xiàn)在將(2)中求得的拋物線記為y1 , 其對應的準蝶形記為F1 .
①求拋物線y2的表達式;
②若F1的碟高為h1 , F2的碟高為h2 , …Fn的碟高為hn . 則hn= , Fn的碟寬右端點橫坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△OAB的頂點坐標分別為(0,0),A(2,1),B(1,﹣2).
(1)以原點O為位似中心,在y軸的右側畫出△OAB的一個位似△OA1B1 , 使它與△OAB的位似比為2:1,并分別寫出點A,B的對應點A1、B1的坐標;
(2)畫出將△OAB向左平移2個單位,再向上平移1個單位后得△O2A2B2 , 并寫出點A,B的對應點A2、B2的坐標;
(3)判斷△OA1B1和△O2A2B2是位似圖形嗎?若是,請在圖中標出位似中心 M,并寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,動點P從點A出發(fā),按A→B→C的方向在AB和BC上移動,記PA=x,點D到直線PA的距離為y,則y關于x的函數(shù)圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸于A(﹣1,0)、B兩點,交y軸于點C(0,5),且過點D(1,8),M為其頂點.
(1)求拋物線的解析式;
(2)求△MCB的面積;
(3)在拋物線上是否存在點P,使△PAB的面積等于△MCB的面積?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在校園文化藝術節(jié)中,九年級一班有1名男生和2名女生獲得美術獎,另有2名男生和2名女生獲得音樂獎.
(1)從獲得美術獎和音樂獎的7名學生中選取1名參加頒獎大會,求剛好是男生的概率;
(2)分別從獲得美術獎、音樂獎的學生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】不透明的口袋里裝有紅、黃、藍三種顏色的小球(除顏色不同外,其它都一樣),其中紅球2個,藍球1個,現(xiàn)在從中任意摸出一個紅球的概率為 .
(1)求袋中黃球的個數(shù);
(2)第一次摸出一個球(不放回),第二次再摸出一個球,請用樹狀圖或列表法求兩次摸出的都是紅球的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com