如圖,等腰△ABC的周長為21,底邊BC=5,AB的垂直平分線DE交AB于點(diǎn)D,交AC于點(diǎn)E,求△BEC的周長.

解:∵等腰△ABC的周長為21,底邊BC=5,
∴AC=(21-5)÷2=8.
∵DE垂直平分AB,
∴AE=BE.
∴△BEC的周長=BC+BE+CE=BC+AC=5+8=13.
分析:△BEC的周長=BC+BE+CE.根據(jù)線段垂直平分線性質(zhì),BE=AE.所以BE+CE=AE+EC=AC.根據(jù)已知求AC即可.
點(diǎn)評:此題主要考查線段垂直平分線的性質(zhì),屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,等腰△ABC的腰長為2
2
,底邊BC=4,以BC所在的直線為x軸,BC的垂直平分線為y軸建立如圖所示的直角坐標(biāo)系,則B
 
、C
 
、A
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,等腰△ABC的底邊BC為16,底邊上的高AD為6,則腰長AB的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,等腰△ABC的腰長是5cm,底邊長是6cm,P是底邊BC上任意一點(diǎn),PD⊥AB,PE⊥AC,垂足分別是D,E,那么PD+PE=
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等腰△ABC的周長為27,底邊BC=5,AB的垂直平分線DE交AB于點(diǎn)D,交AC于點(diǎn)E,則△BEC的周長為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,等腰△ABC的頂角為120°,腰長為10,則底邊BC上的中線AD長為
5
5

查看答案和解析>>

同步練習(xí)冊答案