等邊三角形的邊長(zhǎng)為8,則高為_(kāi)_______,面積為_(kāi)_______.若等邊三角形的高為數(shù)學(xué)公式,則邊長(zhǎng)為_(kāi)_______.

4    16    2
分析:根據(jù)等邊三角形三線合一的性質(zhì)可得D為BC的中點(diǎn),即BD=CD,在直角三角形ABD中,已知AB、BD,根據(jù)勾股定理即可求得AD的長(zhǎng),即可求三角形ABC的面積,即可解題.根據(jù)等邊三角形的性質(zhì)及勾股定理先求得邊長(zhǎng)的一半,再求邊長(zhǎng).
解答:解:如圖,在等邊三角形ABC中,當(dāng)AB=BC=AC=8時(shí),
∵AD是BC邊上的高,
∴BD=4,
∴AD==4,
面積為:BC×AD=×8×4=16;
設(shè)等邊三角形的邊長(zhǎng)是x.根據(jù)等腰三角形的三線合一以及勾股定理,得
x2=(2+3,x=2.
故答案為:4
點(diǎn)評(píng):本題考查了勾股定理在直角三角形中的運(yùn)用,等邊三角形面積的計(jì)算,本題中根據(jù)勾股定理計(jì)算AD的值是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖一,等邊三角形MNP的邊長(zhǎng)為1,線段AB的長(zhǎng)為4,點(diǎn)M與A重合,點(diǎn)N在線段AB上.△MNP沿線段AB按A→B的方向滾動(dòng),直至△MNP中有一個(gè)點(diǎn)與點(diǎn)B重合為止,則點(diǎn)P經(jīng)過(guò)的路程為
 

(2)如圖三,正方形MNPQ的邊長(zhǎng)為1,正方形ABCD的邊長(zhǎng)為2,點(diǎn)M與點(diǎn)A重合,點(diǎn)N在線段AB上,點(diǎn)P在正方形內(nèi)部,正方形MNPQ沿正方形ABCD的邊按A→B→C→D→A→…的方向滾動(dòng),始終保持M,N,P,Q四點(diǎn)在正方形內(nèi)部或邊界上,直至正方形MNPQ回到初始位置為止,則點(diǎn)P經(jīng)過(guò)的最短路程為
 

精英家教網(wǎng)
(注:以△MNP為例,△MNP沿線段AB按A→B的方向滾動(dòng)指的是先以頂點(diǎn)N為中心順時(shí)針旋轉(zhuǎn),當(dāng)頂點(diǎn)P落在線段AB上時(shí),再以頂點(diǎn)P為中心順時(shí)針旋轉(zhuǎn),如此繼續(xù).多邊形沿直線滾動(dòng)與此類(lèi)似.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

等邊三角形的邊長(zhǎng)為2,則該三角形的面積為(  )
A、4
3
B、2
3
C、
3
D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果等邊三角形的邊長(zhǎng)為a,那么它的內(nèi)切圓半徑為( 。
A、
a
2
B、
3
6
a
C、
3
3
a
D、
3
2
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

等邊三角形的邊長(zhǎng)為a,P是等邊三角形內(nèi)一點(diǎn),則P到三邊的距離之和是
3
2
a
3
2
a

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果等邊三角形的邊長(zhǎng)為4,那么連接各邊中點(diǎn)所成的三角形的周長(zhǎng)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案