在一節(jié)數(shù)學(xué)實(shí)踐活動(dòng)課上,呂老師手拿著三個(gè)正方形硬紙板和幾個(gè)不同的圓形的盤子,他向同學(xué)們提出了這樣一個(gè)問題:已知手中圓盤的直徑為13cm,手中的三個(gè)正方形硬紙板的邊長均為5cm,若將三個(gè)正方形紙板不重疊地放在桌面上,能否用這個(gè)圓盤將其蓋?問題提出后,同學(xué)們七嘴八舌,經(jīng)過討論,大家得出了一致性的結(jié)論是:本題實(shí)際上是求在不同情況下將三個(gè)正方形硬紙板無重疊地適當(dāng)放置,圓盤能蓋住時(shí)的最小直徑.然后將各種情形下的直徑值與13cm進(jìn)行比較,若小于或等于13cm就能蓋住,反之,則不能蓋。畢卫蠋煱淹瑢W(xué)們探索性畫出的四類圖形畫在黑板上,如下圖所示.
(1)通過計(jì)算,在①中圓盤剛好能蓋住正方形紙板的最小直徑應(yīng)為
cm.(填準(zhǔn)確數(shù))
(2)圖②能蓋住三個(gè)正方形硬紙板所需的圓盤最小直徑為
cm圖③能蓋住三個(gè)正方形硬紙板所需的圓盤最小直徑為
cm?(結(jié)果填準(zhǔn)確數(shù))
(3)按④中的放置,考慮到圖形的軸對稱性,當(dāng)圓心O落在GH邊上時(shí),此時(shí)圓盤的直徑最。埬銓懗鲈摲N情況下求圓盤最小直徑的過程.(計(jì)算中可能用到的數(shù)據(jù),為了計(jì)算方便,本問在計(jì)算過程中,根據(jù)實(shí)際情況最后的結(jié)果可對個(gè)別數(shù)據(jù)取整數(shù))
(4)由(1)(2)(3)的計(jì)算可知:A.該圓盤能蓋住三個(gè)正方形硬紙板,B.該圓盤不能蓋住三個(gè)正方形硬紙板.你的結(jié)論是
.(填序號(hào))