【題目】如圖,在Rt△ABC中,∠B=90°,AB=4,BC>AB,點(diǎn)D在BC上,以AC為對角線的平行四邊形ADCE中,DE的最小值是 .
【答案】4
【解析】解:∵四邊形ADCE是平行四邊形,
∴BC∥AE,
∴當(dāng)DE⊥BC時(shí),DE最短,
此時(shí)∵∠B=90°,
∴AB⊥BC,
∴DE∥AB,
∴四邊形ABDE是平行四邊形,
∵∠B=90°,
∴四邊形ABDE是矩形,
∴DE=AB=4,
∴DE的最小值為4.
所以答案是4.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解垂線段最短的相關(guān)知識,掌握連接直線外一點(diǎn)與直線上各點(diǎn)的所有線段中,垂線段最短;現(xiàn)實(shí)生活中開溝引水,牽牛喝水都是“垂線段最短”性質(zhì)的應(yīng)用,以及對平行四邊形的性質(zhì)的理解,了解平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作⊙O的切線交CD的延長線于點(diǎn)E,BC=6, .求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的解析式為y=ax2 , 過點(diǎn)B1(1,0)作x軸的垂線,交拋物線于點(diǎn)A1(1,2);過點(diǎn)B2( ,0)作x軸的垂線,交拋物線于點(diǎn)A2;…;過點(diǎn)Bn(( )n﹣1 , 0)(n為正整數(shù))作x軸的垂線,交拋物線于點(diǎn)An , 連接AnBn+1 , 得Rt△AnBnBn+1 .
(1)求a的值;
(2)直接寫出線段AnBn , BnBn+1的長(用含n的式子表示);
(3)在系列Rt△AnBnBn+1中,探究下列問題:
①當(dāng)n為何值時(shí),Rt△AnBnBn+1是等腰直角三角形?
②設(shè)1≤k<m≤n(k,m均為正整數(shù)),問:是否存在Rt△AkBkBk+1與Rt△AmBmBm+1相似?若存在,求出其相似比;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=2x+4與y軸交于A點(diǎn),與x軸交于B點(diǎn),拋物線C1:y=﹣ x2+bx+c過A、B兩點(diǎn),與x軸另一交點(diǎn)為C.
(1)求拋物線解析式及C點(diǎn)坐標(biāo).
(2)向右平移拋物線C1 , 使平移后的拋物線C2恰好經(jīng)過△ABC的外心,拋物線C1、C2相交于點(diǎn)D,求四邊形AOCD的面積.
(3)已知拋物線C2的頂點(diǎn)為M,設(shè)P為拋物線C1對稱軸上一點(diǎn),Q為拋物線C1上一點(diǎn),是否存在以點(diǎn)M、Q、P、B為頂點(diǎn)的四邊形為平行四邊形?若存在,直接寫出P點(diǎn)坐標(biāo);不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,以BC為直徑的圓交AC于點(diǎn)D,∠ABD=∠ACB.
(1)求證:AB是圓的切線;
(2)若點(diǎn)E是BC上一點(diǎn),已知BE=4,tan∠AEB= ,AB:BC=2:3,求圓的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示的晾衣架,支架主視圖的基本圖形是菱形,其示意圖如圖2,晾衣架伸縮時(shí),點(diǎn)G在射線DP上滑動,∠CED的大小也隨之發(fā)生變化,已知每個(gè)菱形邊長均等于20cm,且AH=DE=EG=20cm.
(1)當(dāng)∠CED=60°時(shí),CD=cm.
(2)當(dāng)∠CED由60°變?yōu)?20°時(shí),點(diǎn)A向左移動了cm(結(jié)果精確到0.1cm)(參考數(shù)據(jù) ≈1.73).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一坐標(biāo)系中,一次函數(shù)y=﹣mx+n2與二次函數(shù)y=x2+m的圖象可能是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,BC=4,點(diǎn)E在邊AB上,點(diǎn)F在邊CD上,點(diǎn)G、H在對角線AC上,若四邊形EGFH是菱形,則AE的長是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com