【題目】如圖,⊙O經(jīng)過菱形ABCD的頂點B,C,且與邊AD相切于點E.若AE1,ED5,則⊙O的半徑為(

A.B.C.D.

【答案】C

【解析】

作出如圖的輔助線,求得菱形的邊長為6,根據(jù)勾股定理求得,利用OE+OF=EF列方程即可求解.

連接EO并延長交BC于點F,連接OC、OB,過AAGBCG,

AD是⊙O的切線,

OEAD

∵四邊形ABCD為菱形,

ADBCAB=AD=AE+ED=6,

∴四邊形AGFE為矩形,

GF=AE=1,AG=EF,

OB=OC,且OFBC,

BF=CF=BC=3

RtABG中,AB=6,BG=BF-GF=2,

,

設(shè)⊙O的半徑為,即OB=OE=,

RtBOF中,OB=BF=3,

,

OE+OF=EF=AG=

,

解得:,

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為推廣勞動教育,美化校園環(huán)境,學(xué)校決定在農(nóng)場基地鋪設(shè)一條觀景小道.經(jīng)設(shè)計,鋪設(shè)這條小道需A,B兩種型號石磚共200塊.已知:購買3A型石磚,2B型石磚需要110元;購買5A型石磚,4B型石磚需要200元.

1)求AB兩種型號石磚單價各為多少元?

2)已知B型石磚正在進行促銷活動:購買B型石磚數(shù)量在60塊以內(nèi)(包括60塊)時,不優(yōu)惠;購買B型石磚數(shù)量超過60塊時,每超過1塊,購買的所有B型石磚單價均降0.05元,問:學(xué)校采購石磚,最多需要多少預(yù)算經(jīng)費?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

如圖,在正多邊形的邊上任取一不與點重合的點,并以線段為邊在線段的上方作以正多邊形,把正多邊形叫正多邊形的準位似圖形,點稱為準位似中心.

特例論證:

如圖已知正三角形的準位似圖形為正三角形,試證明:隨著點的運動,的大小始終不變.

數(shù)學(xué)思考:

如圖已知正方形的準位似圖形為正方形,隨著點的運動,的大小始終不變?若不變,請求出的大小;若改變,請說明理由.

歸納猜想:

在圖的情況下:

試猜想的大小是否會發(fā)生改變?若不改變,請用含n的代數(shù)式表示出的大小直接寫出結(jié)果;若改變,請說明理由.

______用含n的代數(shù)式表示

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)接到一批防護服生產(chǎn)任務(wù),按要求15天完成,已知這批防護服的出廠價為每件80元,為按時完成任務(wù),該企業(yè)動員放假回家的工人及時返回加班趕制.該企業(yè)第天生產(chǎn)的防護服數(shù)量為件,之間的關(guān)系可以用圖中的函數(shù)圖象來刻畫.

1)直接寫出的函數(shù)關(guān)系式________;

2)由于疫情加重,原材料緊缺,防護服的成本前5天為每件50元,從第6天起每件防護服的成本比前一天增加2元,設(shè)第天創(chuàng)造的利潤為元,直接利用(1)的結(jié)論,求之間的函數(shù)表達式,并求出第幾天的利潤最大,最大利潤是多少元?(利潤=出廠價-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2bxca0)交x軸于A,B兩點(AB的左側(cè)),交y軸于點C,拋物線的頂點為P,過點BBC的垂線交拋物線于點D

1)若點P的坐標為(-4,-1),點C的坐標為(0,3),求拋物線的表達式;

2)在(1)的條件下,求點A到直線BD的距離;

3)連接DC,若點P的坐標為(-,-),DCx軸,則在x軸上方的拋物線上是否存在點M,使∠AMB=∠BDC?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七年級甲班、乙班舉行一分鐘投籃比賽,每班派10名學(xué)生參賽,在規(guī)定時間內(nèi)進球數(shù)不少于8個為優(yōu)秀學(xué)生.比賽數(shù)據(jù)的統(tǒng)計圖表如下(數(shù)據(jù)不完整):

根據(jù)以上信息,解答下列問題:

1)直接寫出a,b,c的值.

2)你認為哪個班的比賽成績要好一些?請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,有一個等腰直角三角形AOB,∠OAB90°,直角邊AOx軸上,且AO1.將RtAOB繞原點O順時針旋90°轉(zhuǎn)得到等腰直角三角形A1OB1,且A1O2AO,再將RtA1OB1繞原點O順時針旋轉(zhuǎn)90°得到等腰直角三角形A2OB2,且A2O2A1O,…,依此規(guī)律,得到等腰直角三角形A2020OB2020,則點B2020的坐標為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角ABC中,∠C90°ACBC2,PAC的中點,QAB上的一個動點,連接PQ,CQ,則PQ+CQ的最小值為(  )

A.2B.3C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角三角形ABC中,∠C90°,ACBC,EAB的中點,過點EACBC的垂線,垂足分別為點D和點F,四邊形CDEF沿著CA方向勻速運動,點C與點A重合時停止運動,設(shè)運動時間為t,運動過程中四邊形CDEFABC的重疊部分面積為S.則S關(guān)于t的函數(shù)圖象大致為( 。

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案