如圖,反比例函數(shù)y=
kx
的圖象與一次函數(shù)y=mx+b的圖象交于兩點(diǎn)A(1,3),B(n,-1).
(1)求反比例函數(shù)與一次函數(shù)的函數(shù)關(guān)系式;
(2)求由A、B、O三點(diǎn)構(gòu)成的三角形面積;
(3)在反比例函數(shù)的圖象上另找點(diǎn)P,使得點(diǎn)A、O、P構(gòu)成的三角形面積與A、B、O三點(diǎn)構(gòu)成的三角形面積相等,這樣的點(diǎn)還有幾個(gè)?請(qǐng)直接寫出個(gè)數(shù).
分析:(1)先把A(1,3)代入反比例函數(shù)解析式求出k,再把B(n,1)代入反比例函數(shù)解析式求出n,然后利用待定系數(shù)法確定一次函數(shù)y=mx+b的解析式;
(2)先確定C點(diǎn)坐標(biāo)為(0,2),然后利用S△AOB=S△OBC+S△AOC進(jìn)行計(jì)算;
(3)設(shè)點(diǎn)P的坐標(biāo)為:(a,
3
a
),討論:①當(dāng)點(diǎn)P在第一象限,且在A點(diǎn)的右側(cè),即a>1,如圖作AE⊥x軸于E,PF⊥x軸于F,易得S△AOP=S梯形AEFP=
1
2
×(
3
a
+3)×(a-1)=4,解得a1=3,a2=-
1
3
,滿足條件P點(diǎn)坐標(biāo)為(3,1);當(dāng)點(diǎn)P在第一象限,且在A點(diǎn)的右側(cè),即0<a<1,S△AOP=S梯形AEFP=
1
2
×(
3
a
+3)×(1-a)=4,解得a1=-3,a2=
1
3
,得到P點(diǎn)坐標(biāo)為(
1
3
,3);
②當(dāng)點(diǎn)P在第三象限,即a<0,PA交y軸于H點(diǎn),利用待定系數(shù)法求出直線PA的解析式為y=-
3
a
x+
3(a+1)
a
,則H點(diǎn)坐標(biāo)為(0,
3(a+1)
a
),得到S△AOP=S△OHP+S△OAH=
1
2
(-a)•|
3(a+1)
a
|+
1
2
×1×|
3(a+1)
a
|=4,然后討論H點(diǎn)在x軸上方或下方,去絕對(duì)值得到兩個(gè)方程,解方程就可確定a的值,從而得到P點(diǎn)坐標(biāo).
解答:解:(1)∵點(diǎn)A(1,3)在反比例函數(shù)y=
k
x
的圖象上,
∴k=1×3=3,
∴反比例函數(shù)的解析式為:y=
3
x
;
把B(n,-1)代入y=
3
x
得,n=
3
-1
=-3,
∴點(diǎn)B的坐標(biāo)為(-3,-1),
把A(1,3)、B(-3,-1)代入y=mx+b得
m+b=3
-3m+b=-1
,
解得
m=1
b=2
,
故一次函數(shù)的函數(shù)關(guān)系式為:y=x+2;
(2)對(duì)于y=x+2,令x=0,則y=3,
則C點(diǎn)坐標(biāo)為(0,2),
則S△AOB=S△OBC+S△AOC=
1
2
×2×3+
1
2
×2×1=4;
(3)設(shè)點(diǎn)P的坐標(biāo)為:(a,
3
a
),
當(dāng)點(diǎn)P在第一象限,且在A點(diǎn)的右側(cè),即a>1,如圖,作AE⊥x軸于E,PF⊥x軸于F,
∵S△AOP+S△OPF=S△AOE+S梯形AEFP,
而S△OPF=S△AOE,
∴S△AOP=S梯形AEFP=
1
2
×(
3
a
+3)×(a-1)=4,解得a1=3,a2=-
1
3
,
∴a=3,此時(shí)P點(diǎn)坐標(biāo)為(3,1);
當(dāng)點(diǎn)P在第一象限,且在A點(diǎn)的右側(cè),即0<a<1,
S△AOP=S梯形AEFP=
1
2
×(
3
a
+3)×(1-a)=4,解得a1=-3,a2=
1
3
,
則a=
1
3
,此時(shí)P點(diǎn)坐標(biāo)為(
1
3
,3);
當(dāng)點(diǎn)P在第三象限,即a<0,PA交y軸于H點(diǎn),如圖,
易求出直線PA的解析式為y=-
3
a
x+
3(a+1)
a
,
則H點(diǎn)坐標(biāo)為(0,
3(a+1)
a
),
則S△AOP=S△OHP+S△OAH=
1
2
(-a)•|
3(a+1)
a
|+
1
2
×1×|
3(a+1)
a
|=4,
當(dāng)H點(diǎn)在x軸上方,
1
2
(-a)•
3(a+1)
a
+
1
2
×1×
3(a+1)
a
=4,解得a1=-3,a2=
1
3
,
故a=-3,此時(shí)P點(diǎn)與B點(diǎn)重合;
當(dāng)H點(diǎn)在x軸下方,
1
2
(-a)•[-
3(a+1)
a
]+
1
2
×1×[-
3(a+1)
a
]=4,解得a1=3,a2=-
1
3

則a=-
1
3
,此時(shí)P點(diǎn)坐標(biāo)為(-
1
3
,-3),
故滿足條件的P點(diǎn)有三個(gè):(3,1),(
1
3
,3),(-
1
3
,-3).
點(diǎn)評(píng):本題考查了反比例函數(shù)的綜合題:點(diǎn)在反比例函數(shù)圖象上,點(diǎn)的坐標(biāo)滿足其解析式;利用待定系數(shù)法求函數(shù)的解析式;運(yùn)用分類討論的方法去探究滿足條件的點(diǎn)的個(gè)數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,反比例函數(shù)y=
kx
與一次函數(shù)y=ax的圖象交于兩點(diǎn)A、B,若A點(diǎn)坐標(biāo)為(2,1),則B點(diǎn)坐標(biāo)為
(-2,-1)
(-2,-1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,反比例函數(shù)y=
2x
的圖象與一次函數(shù)y=kx+b的圖象交于點(diǎn)A(m,2),點(diǎn)B(-2,n ),一次函數(shù)圖象與y軸的交點(diǎn)為C.
(1)求一次函數(shù)解析式;
(2)求△AOC的面積;
(3)觀察函數(shù)圖象,寫出當(dāng)x取何值時(shí),一次函數(shù)的值比反比例函數(shù)的值小?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,反比例函數(shù)y=
k
x
(x>0)的圖象與一次函數(shù)y=ax+b的圖象交于點(diǎn)A(1,6)和點(diǎn)B(3,2).當(dāng)ax+b<
k
x
時(shí),則x的取值范圍是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,反比例函數(shù)y=
2
x
在第一象限的圖象上有一點(diǎn)P,PC⊥x軸于點(diǎn)C,交反比例函數(shù)y=
1
x
圖象于點(diǎn)A,PD⊥y軸于點(diǎn)D,交y=
1
x
圖象于點(diǎn)B,則四邊形PAOB的面積為
1
1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,反比例函數(shù)y=
kx
的圖象經(jīng)過(guò)A、B兩點(diǎn),點(diǎn)A、B的橫坐標(biāo)分別為2、4,過(guò)A作AC⊥x軸,垂足為C,且△AOC的面積等于4.
(1)求k的值;
(2)求直線AB的函數(shù)值小于反比例函數(shù)的值的x的取值范圍;
(3)求△AOB的面積;
(4)在x軸的正半軸上是否存在一點(diǎn)P,使得△POA為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案