【題目】甲、乙兩人同時分別從A,B兩地沿同一條公路騎自行車到C地.已知A,C兩地間的距離為110千米,B,C兩地間的距離為100千米.甲騎自行車的平均速度比乙快2千米/時.結(jié)果兩人同時到達C地.求兩人的平均速度,為解決此問題,設(shè)乙騎自行車的平均速度為x千米/時.由題意列出方程.其中正確的是( 。
A.=
B.=
C.=
D.=
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,BC=3,AB=5.點P從點B出發(fā),以每秒1個單位長度沿B→C→A→B的方向運動;點Q從點C出發(fā),以每秒2個單位沿C→A→B方向的運動,到達點B后立即原速返回,若P、Q兩點同時運動,相遇后同時停止,設(shè)運動時間為t秒.
(1)當(dāng)t=時,點P與點Q相遇;
(2)在點P從點B到點C的運動過程中,當(dāng)t為何值時,△PCQ為等腰三角形?
(3)在點Q從點B返回點A的運動過程中,設(shè)△PCQ的面積為S平方單位.
①求S與t之間的函數(shù)關(guān)系式;
②當(dāng)S最大時,過點P作直線交AB于點D,將△ABC中沿直線PD折疊,使點A落在直線PC上,求折疊后的△APD與△PCQ重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是邊AB、AC的中點,∠B=50°.先將△ADE沿DE折疊,點A落在三角形所在平面內(nèi)的點為A1 , 則∠BDA1的度數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點E,F(xiàn),G,H分別是四邊形ABCD各邊AB,BC,CD,DA的中點,根據(jù)以下思路可以證明四邊形EFGH是平行四邊形:
(1)如圖2,將圖1中的點C移動至與點E重合的位置,F(xiàn),G,H仍是BC,CD,DA的中點,求證:四邊形CFGH是平行四邊形;
(2)如圖3,在邊長為1的小正方形組成的5×5網(wǎng)格中,點A,C,B都在格點上,在格點上畫出點D,使點C與BC,CD,DA的中點F,G,H組成正方形CFGH;
(3)在(2)條件下求出正方形CFGH的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】暑假期間,小剛一家乘車去離家380公里的某景區(qū)旅游,他們離家的距離y(km)與汽車行駛時間x(h)之間的函數(shù)圖象如圖所示.
(1)從小剛家到該景區(qū)乘車一共用了多少時間?
(2)求線段AB對應(yīng)的函數(shù)解析式;
(3)小剛一家出發(fā)2.5小時時離目的地多遠?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABC中,D是BC邊上一點,E是AD的中點,過點A作BC的平行線交CE的延長線于F,且AF=BD,連接BF.
(1)求證:D是BC的中點;
(2)若AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)課外興趣活動小組準(zhǔn)備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊用長為30米的籬笆圍成,已知墻長為18米(如圖所示),設(shè)這個苗圃園垂直于墻的一邊的長為x米.
(1)若苗圃園的面積為72平方米,求x;
(2)若平行與墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;
(3)當(dāng)這個苗圃園的面積不小于100平方米時,直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的一元二次方程x2﹣2x+kb+1=0有兩個不相等的實數(shù)根,則一次函數(shù)y=kx+b的大致圖象可能是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過點A(﹣3,0),B(9,0)和C(0,4).CD垂直于y軸,交拋物線于點D,DE垂直與x軸,垂足為E,l是拋物線的對稱軸,點F是拋物線的頂點.
(1)求出二次函數(shù)的表達式以及點D的坐標(biāo);
(2)若Rt△AOC沿x軸向右平移到其直角邊OC與對稱軸l重合,再沿對稱軸l向上平移到點C與點F重合,得到Rt△A1O1F,求此時Rt△A1O1F與矩形OCDE重疊部分的圖形的面積;
(3)若Rt△AOC沿x軸向右平移t個單位長度(0<t≤6)得到Rt△A2O2C2 , Rt△A2O2C2與Rt△OED重疊部分的圖形面積記為S,求S與t之間的函數(shù)表達式,并寫出自變量t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com