精英家教網 > 初中數學 > 題目詳情
(2013•燕山區(qū)一模)計算:
27
-(
1
3
)-1-2cos30°+(π-3)0
分析:本題涉及零指數冪、乘方、特殊角的三角函數值、二次根式化簡四個考點.針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果.
解答:解:原式=3
3
-3-2×
3
2
+1              
=2
3
-2.
點評:本題考查實數的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關鍵是熟記特殊角的三角函數值,熟練掌握負整數指數冪、零指數冪、二次根式、絕對值等考點的運算.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•燕山區(qū)一模)若實數a與-3互為相反數,則a的值為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•燕山區(qū)一模)春節(jié)假期,全國收費公路7座以下小型客車實行免費通行.據交通運輸部統(tǒng)計,春節(jié)期間,全國收費公路(除四川、西藏、海南外)共免收通行費846 000 000元.把846 000 000用科學記數法表示應為( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•燕山區(qū)一模)如圖,點P是⊙O的弦AB上任一點(與A,B均不重合),點C在⊙O上,PC⊥OP,已知AB=8,設BP=x,PC2=y,y與x之間的函數圖象大致是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

(2013•燕山區(qū)一模)如圖,直線y=2x-1與反比例函數y=
kx
的圖象交于A,B兩點,與x軸交于C點,已知點A的坐標為(-1,m).
(1)求反比例函數的解析式;
(2)若P是x軸上一點,且滿足△PAC的面積是6,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:閱讀理解

(2013•燕山區(qū)一模)閱讀下列材料:
問題:如圖(1),已知正方形ABCD中,E、F分別是BC、CD邊上的點,且∠EAF=45°. 判斷線段BE、EF、FD之間的數量關系,并說明理由.

小明同學的想法是:已知條件比較分散,可以通過旋轉變換將分散的已知條件集中在一起,于是他將△DAF繞點A順時針旋轉90°,得到△BAH,然后通過證明三角形全等可得出結論.
請你參考小明同學的思路,解決下列問題:
(1)圖(1)中線段BE、EF、FD之間的數量關系是
EF=BE+DF
EF=BE+DF

(2)如圖(2),已知正方形ABCD邊長為5,E、F分別是BC、CD邊上的點,且∠EAF=45°,AG⊥EF于點G,則AG的長為
5
5
,△EFC的周長為
10
10
;
(3)如圖(3),已知△AEF中,∠EAF=45°,AG⊥EF于點G,且EG=2,GF=3,則△AEF的面積為
15
15

查看答案和解析>>

同步練習冊答案