22、如圖1,已知矩形ABED,點(diǎn)C是邊DE的中點(diǎn),且AB=2AD.
(1)判斷△ABC的形狀,并說(shuō)明理由;
(2)保持圖1中△ABC固定不變,繞點(diǎn)C旋轉(zhuǎn)DE所在的直線MN到圖2中(當(dāng)垂線段AD、BE在直線MN的同側(cè)),試探究線段AD、BE、DE長(zhǎng)度之間有什么關(guān)系?并給予證明;
(3)保持圖2中△ABC固定不變,繼續(xù)繞點(diǎn)C旋轉(zhuǎn)DE所在的直線MN到圖3中的位置(當(dāng)垂線段AD、BE在直線MN的異側(cè)).試探究線段AD、BE、DE長(zhǎng)度之間有什么關(guān)系?并給予證明.
分析:(1)根據(jù)矩形的性質(zhì)及勾股定理,即可判斷△ABC的形狀;
(2)(3)通過(guò)證明△ACD≌△CBE,根據(jù)全等三角形的性質(zhì)得出即可得線段AD、BE、DE長(zhǎng)度之間的關(guān)系.
解答:解:(1)△ABC是等腰直角三角形.理由如下:
在△ADC與△BEC中,AD=BE,∠D=∠E=90°,DC=EC,
∴△ADC≌△BEC,
∴AC=BC,∠DCA=∠ECB.
∵AB=2AD=DE,DC=CE,
∴AD=DC,
∴∠DCA=45°,
∴∠ECB=45°,
∴∠ACB=180°-∠DCA-∠ECB=90°.
∴△ABC是等腰直角三角形.

(2)DE=AD+BE.理由如下:
在△ACD與△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC,
∴△ACD≌△CBE,
∴AD=CE,DC=EB.
∴DC-CE=BE-AD,
即DE=AD+BE.

(3)DE=BE-AD.理由如下:
在△ACD與△CBE中,∠ACD=∠CBE=90°-∠BCE,∠ADC=∠BEC=90°,AC=BC,
∴△ACD≌△CBE,
∴AD=CE,DC=EB.
∴DC-CE=BE-AD,
即DE=BE-AD.
點(diǎn)評(píng):本題考查了等腰直角三角形的判定、全等三角形的判定和性質(zhì)等知識(shí),綜合性強(qiáng),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知矩形ABCD的頂點(diǎn)A與點(diǎn)O重合,AD、AB分別在x軸、y軸上,且AD=2,AB=3;拋物線y=-x2+bx+c經(jīng)過(guò)坐標(biāo)原點(diǎn)O和x軸上另一點(diǎn)E(4,0)
(1)當(dāng)x取何值時(shí),該拋物線取最大值?該拋物線的最大值是多少?
(2)將矩形ABCD以每秒1個(gè)單位長(zhǎng)度的速度從圖1所示的位置沿x軸的正方向勻速平行移動(dòng),同時(shí)一動(dòng)點(diǎn)P也以相同的速度從點(diǎn)A出發(fā)向B勻速移動(dòng).設(shè)它們運(yùn)動(dòng)的時(shí)間為t秒(0≤t≤3),直線AB與該拋物線的交點(diǎn)為N(如圖2所示).
①當(dāng)t=
114
時(shí),判斷點(diǎn)P是否在直線ME上,并說(shuō)明理由;
②以P、N、C、D為頂點(diǎn)的多邊形面積是否可能為5?若有可能,求出此時(shí)N點(diǎn)的坐標(biāo);若無(wú)可能,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知矩形OABC中,OC=10,OA=6,在OA、OC邊上選取適當(dāng)?shù)狞c(diǎn)E、F,將△OEF沿EF對(duì)折,使O點(diǎn)落在AB邊上的D點(diǎn).
(1)當(dāng)點(diǎn)E取在點(diǎn)A上,得圖2,求出相應(yīng)的OF的長(zhǎng);
(2)寫出OF的取值范圍;
(3)在如圖1中過(guò)點(diǎn)D作DG∥AO交EF于點(diǎn)T,交OC于點(diǎn)G,連接OT,得到圖3
①證明四邊形OEDT是菱形;
②設(shè)AD長(zhǎng)為x,請(qǐng)你利用所學(xué)的函數(shù)及其圖象的有關(guān)知識(shí)判斷,當(dāng)x取什么值時(shí),菱形OEDT的周長(zhǎng)L取最大值,并求出周長(zhǎng)L的最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶安區(qū)二模)如圖1,已知矩形ABCD中,AB=
4
3
BC
,O是矩形ABCD的中心,過(guò)點(diǎn)O作OE⊥AB于E,作OF⊥BC于F,得矩形BEOF.
(1)線段AE與CF的數(shù)量關(guān)系是
AE=
4
3
CF;
AE=
4
3
CF;
,直線AE與CF的位置關(guān)系是
AE⊥CF
AE⊥CF
;
(2)固定矩形ABCD,將矩形BEOF繞點(diǎn)B順時(shí)針旋轉(zhuǎn)到如圖2的位置,連接AE、CF.那么(1)中的結(jié)論是否依然成立?請(qǐng)說(shuō)明理由;
(3)若AB=8,當(dāng)矩形BEOF旋轉(zhuǎn)至點(diǎn)O在CF上時(shí)(如圖3),設(shè)OE與BC交于點(diǎn)P,求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•下關(guān)區(qū)一模)如圖1,已知矩形ABCD中,AB=5,AD=4,點(diǎn)M在線段CD上,連接AM.把矩形沿一條直線EF折疊,使點(diǎn)A與點(diǎn)M重合.

(1)作出直線EF (保留作圖痕跡,不寫作法);
(2)當(dāng)直線EF經(jīng)過(guò)點(diǎn)B時(shí),連接BM,求△BCM的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案