二次函數(shù)圖象上部分點的坐標(biāo)滿足下表:
則該函數(shù)圖象的頂點坐標(biāo)為【   】
x

﹣3
﹣2
﹣1
0
1

y

﹣3
﹣2
﹣3
﹣6
﹣11

A.(-3,-3)      B.(-2,-2)      C.(-1,-3)      D.(0,-6)
B。
根據(jù)二次函數(shù)的對稱性確定出二次函數(shù)的對稱軸,然后解答即可:
∵x=﹣3和﹣1時的函數(shù)值都是﹣3相等,∴二次函數(shù)的對稱軸為直線x=﹣2,
∴頂點坐標(biāo)為(﹣2,﹣2)。故選B。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線經(jīng)過點A(6,0)、B(0,-4).

(1)求該拋物線的解析式;
(2)若拋物線對稱軸與x軸交于點C,連接BC,點P在拋物線對稱軸上,使△PBC為等腰三角形,請寫出符合條件的所有點P坐標(biāo).(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將拋物線向左平移1個單位,再向下平移3個單位后所得拋物線的解析式為【   】
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的頂點為點D,并與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C.

(1)求點A、B、C、D的坐標(biāo);
(2)在y軸的正半軸上是否存在點P,使以點P、O、A為頂點的三角形與△AOC相似?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
(3)取點E(,0)和點F(0,),直線l經(jīng)過E、F兩點,點G是線段BD的中點.
①點G是否在直線l上,請說明理由;
②在拋物線上是否存在點M,使點M關(guān)于直線l的對稱點在x軸上?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(1,0),(5,0),(3,﹣4).

(1)求該二次函數(shù)的解析式;
(2)當(dāng)y>﹣3,寫出x的取值范圍; 
(3)A、B為直線y=﹣2x﹣6上兩動點,且距離為2,點C為二次函數(shù)圖象上的動點,當(dāng)點C運(yùn)動到何處時△ABC的面積最?求出此時點C的坐標(biāo)及△ABC面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖像與圖像的形狀、開口方向相同,只是位置不同,則二次函數(shù)的頂點坐標(biāo)是
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,頂點為M的拋物線經(jīng)過點A和x軸正半軸上的點B,AO=OB=2,∠AOB=1200

(1)求這條拋物線的表達(dá)式;
(2)連接OM,求∠AOM的大小;
(3)如果點C在x軸上,且△ABC與△AOM相似,求點C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的圖象如圖所示,對于下列結(jié)論:①a<0;②b<0;③c>0;④b+2a=0;⑤a+b+c<0.其中正確的個數(shù)是【   】
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)y=x2+2mx+2,當(dāng)x>2時,y的值隨x值的增大而增大,則實數(shù)m的取值范圍是     

查看答案和解析>>

同步練習(xí)冊答案