如圖,單位正方形ABCD被EF、GH分成相等的矩形.試問:是否存在另外的分法,既能將單位正方形分成面積相等的三個(gè)多邊形,又能使三個(gè)多邊形的公共邊界小于EF與GH的和.
【答案】分析:首先設(shè)出正方形ABCD的邊長為1,計(jì)算出EF+GH的值為,再進(jìn)一步利用三部分面積相等求出三部分的面積為,設(shè)GH∥AD且GH=x,根據(jù)勾股定理求出EG 和FG的長度,根據(jù)GH+EG+GF<求出x的范圍即可進(jìn)行判斷.
解答:解:如圖,

設(shè)正方形ABCD的邊長為1,
由于分成三面積相等,可以計(jì)算得出EF+GH=1+=,
存在,
假如能作出符合條件的圖形如圖(2),
設(shè)GH∥AD,延長HG交AB于N,過E作EQ⊥NH于Q,GH=x,
由梯形的面積公式得:(x+DE)•=,
即:DE=-x,
∴AE=1-(-x)=-+x,
QG=1-(-+x)-x=-2x,
又∵EQ=
在△EQG中由勾股定理得:EG=,
同理:FG=
GH+EG+GF=x+2,
解得:0<x<,
只要符合上面條件的GH的值都能畫出,
故答案為:存在.
點(diǎn)評(píng):此題主要利用正方形的性質(zhì),梯形的面積公式,勾股定理等知識(shí),能正確利用知識(shí)進(jìn)行計(jì)算是解此題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,過原點(diǎn)的直線l1:y=3x,l2:y=
12
x.點(diǎn)P從原點(diǎn)O出發(fā)沿x軸正方向以每秒1個(gè)單位長度的速度運(yùn)動(dòng).直線PQ交y軸正半軸于點(diǎn)Q,且分別交l1、l2于點(diǎn)A、B.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒時(shí),直線PQ的解析式為y=-x+t.△AOB的面積為Sl(如圖①).以AB為對(duì)角線作正方形ACBD,其面積為S2(如圖②).連接PD并延長,交l1于點(diǎn)E,交l2于點(diǎn)F.設(shè)△PEA的面積為S3;(如圖③)
精英家教網(wǎng)
(1)Sl關(guān)于t的函數(shù)解析式為
 
;(2)直線OC的函數(shù)解析式為
 
;
(3)S2關(guān)于t的函數(shù)解析式為
 
;(4)S3關(guān)于t的函數(shù)解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖(單位:m),直角梯形ABCD以2m/s的速度沿直線l向正方形CEFG方向移動(dòng),直到AB與FE重合,直角梯形ABCD與正方形CEFG重疊部分的面積S關(guān)于移動(dòng)時(shí)間t的函數(shù)圖象可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖(單位:m),等腰直角三角形ABC以2米/秒的速度沿直線L向正方形移動(dòng),直到精英家教網(wǎng)AB與CD重合.設(shè)x秒時(shí),三角形與正方形不重疊部分的面積為ym2
(1)寫出y與x的關(guān)系式,并寫出自變量x的取值范圍;
(2)請畫出此函數(shù)的圖象;
(3)當(dāng)不重疊部分的面積是三角形面積的一半時(shí),三角形移動(dòng)了多長時(shí)間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖是單位長度為1的正方形網(wǎng)格.
(1)在圖1中畫出一條長度為
10
的線段AB;
(2)在圖2中畫出一個(gè)以格點(diǎn)為頂點(diǎn),面積為5的正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平移正方形網(wǎng)格中的陰影圖案,使AB移到A′B′位置,畫出平移后的圖形,再將所得到的圖形,向左平移9個(gè)單位長度.(設(shè)每1格代表1個(gè)單位長度)

查看答案和解析>>

同步練習(xí)冊答案