【題目】如圖1,在菱形ABCD中,對角線AC與BD相交于點O,AB=13,BD=24,在菱形ABCD的外部以AB為邊作等邊三角形 ABE.點F是對角線BD上一動點(點F不與點B重合),將線段AF繞點A順時針方向旋轉(zhuǎn)60°得到線段AM,連接FM.
(1)求AO的長;
(2)如圖2,當點F在線段BO上,且點M,F(xiàn),C三點在同一條直線上時,求證:AC=AM;
(3)連接EM,若△AEM的面積為40,請直接寫出△AFM的周長.
【答案】(1)、5;(2)、證明過程見解析;(3)、3
【解析】
試題分析:(1)、在RT△OAB中,利用勾股定理OA=求解;(2)、由四邊形ABCD是菱形,求出△AFM為等邊三角形,∠M=∠AFM=60°,再求出∠MAC=90°,在Rt△ACM中tan∠M=,求出AC;(3)、求出△AEM≌△ABF,利用△AEM的面積為40求出BF,在利用勾股定理AF==,得出△AFM的周長為3.
試題解析:(1)、∵四邊形ABCD是菱形,
∴AC⊥BD,OB=OD=BD,
∵BD=24,
∴OB=12,
在Rt△OAB中,
∵AB=13,
∴OA==5.
(2)、如圖2,
∵四邊形ABCD是菱形,
∴BD垂直平分AC,
∴FA=FC,∠FAC=∠FCA,
由已知AF=AM,∠MAF=60°,
∴△AFM為等邊三角形,
∴∠M=∠AFM=60°,
∵點M,F(xiàn),C三點在同一條直線上,
∴∠FAC+∠FCA=∠AFM=60°,
∴∠FAC=∠FCA=30°,
∴∠MAC=∠MAF+∠FAC=60°+30°=90°,
在Rt△ACM中∵tan∠M=,
∴tan60°=,
∴AC=AM.
(3)、如圖,連接EM,
∵△ABE是等邊三角形,
∴AE=AB,∠EAB=60°,
由(2)知△AFM為等邊三角形,
∴AM=AF,∠MAF=60°,
∴∠EAM=∠BAF,
在△AEM和△ABF中,,
∴△AEM≌△ABF(SAS),
∵△AEM的面積為40,△ABF的高為AO
∴BFAO=40,BF=16,
∴FO=BF﹣BO=16﹣12=4
AF==,
∴△AFM的周長為3.
科目:初中數(shù)學 來源: 題型:
【題目】下列3×3網(wǎng)格圖都是由9個相同的小正方形組成,每個網(wǎng)格圖中有3個小正方形已涂上陰影,請在余下的6個空白小正方形中,按下列要求涂上陰影:
(1)選取1個涂上陰影,使4個陰影小正方形組成一個軸對稱圖形,但不是中心對稱圖形;
(2)選取1個涂上陰影,使4個陰影小正方形組成一個中心對稱圖形,但不是軸對稱圖形;
(3)選取2個涂上陰影,使5個陰影小正方形組成一個軸對稱圖形.
(請將三個小題依次作答在圖1、圖2、圖3中,均只需畫出符合條件的一種情形)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用完全平方公式計算79.82的最佳選擇是( )
A. (80-0.2)2 B. (100-20.2)2
C. (79+0.8)2 D. (70+9.8)2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com