【題目】如圖,AB∥CD,AD與BC交于點E,EF是∠BED的平分線,若∠1=30°,∠2=40°,則∠BEF=度.

【答案】35
【解析】解:過點E作EM∥AB, ∵AB∥CD,
∴EM∥AB∥CD,
∵∠1=30°,∠2=40°,
∴∠3=∠1=30°,∠4=∠2=40°,
∴∠BED=∠AEC=∠3+∠4=70°,
∵EF是∠BED的平分線,
∴∠BEF= ∠BED= ×70°=35°.
所以答案是:35.

【考點精析】利用角的平分線和平行線的性質(zhì)對題目進行判斷即可得到答案,需要熟知從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線;兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】用適當?shù)姆柋硎鞠铝嘘P(guān)系:

(l)a的2倍比a與3的和; (2)y的一半與5的差是非負數(shù);

(3)x的3倍與1的和小于x的2倍與5的差.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商廈進貨員在蘇州發(fā)現(xiàn)了一種應季圍巾,用8000元購進一批圍巾后,發(fā)現(xiàn)市場還有較大的需求,又在上海用17600元購進了同一種圍巾,數(shù)量恰好是在蘇州所購數(shù)量的2倍,但每條比在蘇州購進的多了4問某商廈在蘇州、上海分別購買了多少條圍巾?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A(﹣m,n),B(0,m),且m、n滿足+(n﹣5)2=0,點Cy軸上,將ABC沿y軸折疊,使點A落在點D處.

(1)寫出D點坐標并求A、D兩點間的距離;

(2)若EF平分∠AED,若∠ACF﹣AEF=20°,求∠EFB的度數(shù);

(3)過點CQH平行于ABx軸于點H,點QHC的延長線上,ABx軸于點R,CP、RP分別平分∠BCQ和∠ARX,當點Cy軸上運動時,∠CPR的度數(shù)是否發(fā)生變化?若不變,求其度數(shù);若變化,求其變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】按要求解答下列各題:

(1)解不等式:3x52(23x)

(2)解不等式:2x3≤ (x2);

(3)解不等式: x1,并將解集在數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系中,ABCD為長方形,其中點A、C坐標分別為(﹣4,2)、(1,﹣4),且ADx軸,交y軸于M點,ABx軸于N.

(1)求B、D兩點坐標和長方形ABCD的面積;

(2)一動點PA出發(fā)(不與A點重合),以個單位/秒的速度沿ABB點運動,在P點運動過程中,連接MP、OP,請直接寫出∠AMP、MPO、PON之間的數(shù)量關(guān)系;

(3)是否存在某一時刻t,使三角形AMP的面積等于長方形面積的?若存在,求t的值并求此時點P的坐標;若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某飲料廠以300千克的A種果汁和240千克的B種果汁為原料,配制生產(chǎn)甲、乙兩種新型飲料,已知每千克甲種飲料含0.6千克A種果汁,含0.3千克B種果汁;每千克乙種飲料含0.2千克A種果汁,含0.4千克B種果汁.飲料廠計劃生產(chǎn)甲、乙兩種新型飲料共650千克,設(shè)該廠生產(chǎn)甲種飲料x(千克).

(1)列出滿足題意的關(guān)于x的不等式組,并求出x的取值范圍;

(2)已知該飲料廠的甲種飲料銷售價是每1千克3元,乙種飲料銷售價是每1千克4元,那么該飲料廠生產(chǎn)甲、乙兩種飲料各多少千克,才能使得這批飲料銷售總金額最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A.相等的角是對頂角

B.在同一平面內(nèi),不平行的兩條直線一定互相垂直

C.P(2,﹣3)在第四象限

D.一個數(shù)的算術(shù)平方根一定是正數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知平行四邊形ABCD,DE是∠ADC的角平分線,交BC于點E

1)求證:CD=CE;

2)若BE=CE,B=80°,求∠DAE的度數(shù).

查看答案和解析>>

同步練習冊答案