科目: 來源:2010-2011學年度臨沂市費縣七年級第二學期期末檢測數(shù)學 題型:解答題
(11·永州)(本題滿分10分)探究問題:
⑴方法感悟:
如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,由旋轉可得:
AB="AD,BG=DE," ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF="45° " ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2, ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
⑵方法遷移:
如圖②,將沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關系,并證明你的猜想.
⑶問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足,試猜想當∠B與∠D滿足什么關系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).
查看答案和解析>>
科目: 來源:2010-2011學年度臨沂市費縣七年級第二學期期末檢測數(shù)學 題型:解答題
(11·永州)(本題滿分8分)如圖,BD是□ABCD的對角線,∠ABD的平分線
BE交AD于點E,∠CDB的平分線DF交BC于點F.
求證:△ABE≌△CDF.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學考試(山東濟南卷)數(shù)學解析版 題型:解答題
(11·丹東)(本題12分)已知:正方形ABCD.
(1)如圖1,點E、點F分別在邊AB和AD上,且AE=AF.此時,線段BE、DF的數(shù)量關系和位置關系分別是什么?請直接寫出結論.
(2)如圖2,等腰直角三角形FAE繞直角頂點A順時針旋轉,當時,連接BE、DF,此時(1)中結論是否成立,如果成立,請證明;如果不成立,請說明理由.
(3)如圖3,等腰直角三角形FAE繞直角頂點A順時針旋轉,當時,連接BE、DF,猜想當AE與AD滿足什么數(shù)量關系時,直線DF垂直平分BE.請直接寫出結論.
(4)如圖4,等腰直角三角形FAE繞直角頂點A順時針旋轉,當時,連接BD、DE、EF、FB得到四邊形BDEF,則順次連接四邊形BDEF各邊中點所組成的四邊形是什么特殊四邊形?請直接寫出結論.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學考試(遼寧大連卷)數(shù)學 題型:解答題
(11·大連)(本題9分)如圖6,等腰梯形ABCD中,AD∥BC,M是BC的中點,求證:∠DAM=∠ADM.
查看答案和解析>>
科目: 來源:2011年濱海新區(qū)大港初中畢業(yè)生學業(yè)考試第一次模擬試卷數(shù)學 題型:解答題
(本小題10分)如圖,四邊形ABCD是正方形,△ABE是等邊三角形,M為對角線BD(不含B點)上任意一點,將BM繞點B逆時針旋轉60°得到BN,連接EN、AM、CM.
(Ⅰ)求證:△AMB≌△ENB;
(Ⅱ)①當M點在何處時,AM+CM的值最。
②當M點在何處時,AM+BM+CM的值最小,并說明理由;
(Ⅲ)當AM+BM+CM的最小值為時,求正方形的邊長.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學考試(遼寧大連卷)數(shù)學 題型:解答題
(11·天水)(10分)某校開展的一次動漫設計大賽,楊帆同學運用了數(shù)學知識
進行了富有創(chuàng)意的圖案設計,如圖(1),他在邊長為1的正方形ABCD內作等邊△BCE,
并與正方形的對角線交于點F、G,制作如圖(2)的圖標,請我計算一下圖案中陰影圖形的
面積.
查看答案和解析>>
科目: 來源:2011年初中畢業(yè)升學考試(遼寧大連卷)數(shù)學 題型:解答題
(11·天水)已知,如圖E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,
DF=BE,DF∥BE,四邊形ABCD是平行四邊形嗎?請說明理由.
查看答案和解析>>
科目: 來源:2010-2011學年廣西灌陽縣第二學期期末質量檢測七年級數(shù)學 題型:解答題
(2011•恩施州)如圖,四邊形ABCD中,AB=AC=AD,BC=CD,銳角∠BAC的角平分線AE交BC于點E,AF是CD邊上的中線,且PC⊥CD與AE交于點P,QC⊥BC與AF交于點Q.求證:四邊形APCQ是菱形.
查看答案和解析>>
科目: 來源:2010~2011學年度安徽省望江縣七年級第二學期期末質量檢測數(shù)學 題型:解答題
(9分)如圖1,在△ABC中,AB=AC,D是底邊BC上的一點,BD>CD,將△ABC
沿AD剪開,拼成如圖2的四邊形ABDC′.
(1)四邊形ABDC′具有什么特點?
(2)請同學們在圖3中,用尺規(guī)作一個以MN,NP為鄰邊的四邊形MNPQ,使四邊形MNPQ具有上述特點(要求:寫出作法,但不要求證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com