相關(guān)習(xí)題
 0  126964  126972  126978  126982  126988  126990  126994  127000  127002  127008  127014  127018  127020  127024  127030  127032  127038  127042  127044  127048  127050  127054  127056  127058  127059  127060  127062  127063  127064  127066  127068  127072  127074  127078  127080  127084  127090  127092  127098  127102  127104  127108  127114  127120  127122  127128  127132  127134  127140  127144  127150  127158  366461 

科目: 來源:第2章《二次函數(shù)》?碱}集(17):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商場將進(jìn)價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.
(1)假設(shè)每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出y與x之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)
(2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應(yīng)降價多少元?
(3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(17):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商品的進(jìn)價為每件40元,售價為每件50元,每個月可賣出210件;如果每件商品的售價每上漲1元,則每個月少賣10件(每件售價不能高于65元).設(shè)每件商品的售價上漲x元(x為正整數(shù)),每個月的銷售利潤為y元.
(1)求y與x的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)每件商品的售價定為多少元時,每個月可獲得最大利潤?最大的月利潤是多少元?
(3)每件商品的售價定為多少元時,每個月的利潤恰為2200元?根據(jù)以上結(jié)論,請你直接寫出售價在什么范圍時,每個月的利潤不低于2200元?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(17):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

種植能手小李的實驗田可種植A種作物或B種作物(A、B兩種作物不能同時種植),原來的種植情況如表.通過參加農(nóng)業(yè)科技培訓(xùn),小李提高了種植技術(shù).現(xiàn)準(zhǔn)備在原有的基礎(chǔ)上增種,以提高總產(chǎn)量.但根據(jù)科學(xué)種植的經(jīng)驗,每增種1棵A種或B種作物,都會導(dǎo)致單棵作物平均產(chǎn)量減少0.2千克,而且每種作物的增種數(shù)量都不能超過原有數(shù)量的80%.設(shè)A種作物增種m棵,總產(chǎn)量為yA千克;B種作物增種n棵,總產(chǎn)量為yB千克.
種植品種
數(shù)量
A種作物B中作物
原種植量(棵)5060
原產(chǎn)量(千克/棵)3026
(1)A種作物增種m棵后,單棵平均產(chǎn)量為______千克;B種作物增種n棵后,單棵平均產(chǎn)量為______千克;
(2)求yA與m之間的函數(shù)關(guān)系式及yB與n之間的函數(shù)關(guān)系式;
(3)求提高種植技術(shù)后,小李增種何種作物可獲得最大總產(chǎn)量?最大總產(chǎn)量是多少千克?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(17):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

為把產(chǎn)品打入國際市場,某企業(yè)決定從下面兩個投資方案中選擇一個進(jìn)行投資生產(chǎn).方案一:生產(chǎn)甲產(chǎn)品,每件產(chǎn)品成本為a萬美元(a為常數(shù),且3<a<8),每件產(chǎn)品銷售價為10萬美元,每年最多可生產(chǎn)200件;方案二:生產(chǎn)乙產(chǎn)品,每件產(chǎn)品成本為8萬美元,每件產(chǎn)品銷售價為18萬美元,每年最多可生產(chǎn)120件.另外,年銷售x件乙產(chǎn)品時需上交0.05x2萬美元的特別關(guān)稅.在不考慮其它因素的情況下:
(1)分別寫出該企業(yè)兩個投資方案的年利潤y1、y2與相應(yīng)生產(chǎn)件數(shù)x(x為正整數(shù))之間的函數(shù)關(guān)系式,并指出自變量的取值范圍;
(2)分別求出這兩個投資方案的最大年利潤;
(3)如果你是企業(yè)決策者,為了獲得最大收益,你會選擇哪個投資方案?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(17):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,等腰梯形花圃ABCD的底邊AD靠墻,另三邊用長為40米的鐵欄桿圍成,設(shè)該花圃的腰AB的長為x米.
(1)請求出底邊BC的長(用含x的代數(shù)式表示);
(2)若∠BAD=60°,該花圃的面積為S米2
①求S與x之間的函數(shù)關(guān)系式(要指出自變量x的取值范圍),并求當(dāng)S=93時x的值;
②如果墻長為24米,試問S有最大值還是最小值?這個值是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(17):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

由于國家重點扶持節(jié)能環(huán)保產(chǎn)業(yè),某種節(jié)能產(chǎn)品的銷售市場逐漸回暖,某經(jīng)銷商銷售這種產(chǎn)品,年初與生產(chǎn)廠家簽訂了一份進(jìn)貨合同,約定一年內(nèi)進(jìn)價為0.1萬元/臺,并預(yù)付了5萬元押金.他計劃一年內(nèi)要達(dá)到一定的銷售量,且完成此銷售量所用的進(jìn)貨總金額加上押金控制在不低于34萬元,但不高于40萬元.若一年內(nèi)該產(chǎn)品的售價y(萬元/臺)與月次x(1≤x≤12且為整數(shù))滿足關(guān)系式:y=,一年后發(fā)現(xiàn)實際每月的銷售量p(臺)與月次x之間存在如圖所示的變化趨勢.
(1)直接寫出實際每月的銷售量p(臺)與月次x之間的函數(shù)關(guān)系式;
(2)求前三個月中每月的實際銷售利潤w(萬元)與月次x之間的函數(shù)關(guān)系式;
(3)試判斷全年哪一個月的售價最高,并指出最高售價;
(4)請通過計算說明他這一年是否完成了年初計劃的銷售量.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(17):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商場在銷售旺季臨近時,某品牌的童裝銷售價格呈上升趨勢,假如這種童裝開始時的售價為每件20元,并且每周(7天)漲價2元,從第6周開始,保持每件30元的穩(wěn)定價格銷售,直到11周結(jié)束,該童裝不再銷售.
(1)請建立銷售價格y(元)與周次x之間的函數(shù)關(guān)系;
(2)若該品牌童裝于進(jìn)貨當(dāng)周售完,且這種童裝每件進(jìn)價z(元)與周次x之間的關(guān)系為z=-(x-8)2+12,1≤x≤11,且x為整數(shù),那么該品牌童裝在第幾周售出后,每件獲得利潤最大?并求最大利潤為多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(17):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某體育用品商店購進(jìn)一批滑板,每件進(jìn)價為100元,售價為130元,每星期可賣出80件.商家決定降價促銷,根據(jù)市場調(diào)查,每降價5元,每星期可多賣出20件.
(1)求商家降價前每星期的銷售利潤為多少元?
(2)降價后,商家要使每星期的銷售利潤最大,應(yīng)將售價定為多少元?最大銷售利潤是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(17):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某超市經(jīng)銷一種銷售成本為每件40元的商品.據(jù)市場調(diào)查分析,如果按每件50元銷售,一周能售出500件,若銷售單價每漲1元,每周銷售量就減少10件.設(shè)銷售單價為每件x元(x≥50),一周的銷售量為y件.
(1)寫出y與x的函數(shù)關(guān)系式.(標(biāo)明x的取值范圍)
(2)設(shè)一周的銷售利潤為S,寫出S與x的函數(shù)關(guān)系式,并確定當(dāng)單價在什么范圍內(nèi)變化時,利潤隨著單價的增大而增大?
(3)在超市對該種商品投入不超過10 000元的情況下,使得一周銷售利潤達(dá)到8 000元,銷售單價應(yīng)定為多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(19):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某小區(qū)有一長100m,寬80m的空地,現(xiàn)將其建成花園廣場,設(shè)計圖案如下,陰影區(qū)域為綠化區(qū)(四塊綠化區(qū)是全等矩形),空白區(qū)域為活動區(qū),且四周出口一樣寬,寬度不小于50m,不大于60m.預(yù)計活動區(qū)每平方米造價60元,綠化區(qū)每平方米造價50元.設(shè)每塊綠化區(qū)的長邊為x m,短邊為y m,工程總造價為w元.
(1)寫出x的取值范圍;
(2)寫出y與x的函數(shù)關(guān)系式;
(3)寫出w與x的函數(shù)關(guān)系式;
(4)如果小區(qū)投資46.9萬元,問能否完成工程任務(wù)?若能,請寫出x為整數(shù)的所有工程方案;若不能,請說明理由.(參考數(shù)據(jù):≈1.732)

查看答案和解析>>

同步練習(xí)冊答案