相關(guān)習(xí)題
 0  127059  127067  127073  127077  127083  127085  127089  127095  127097  127103  127109  127113  127115  127119  127125  127127  127133  127137  127139  127143  127145  127149  127151  127153  127154  127155  127157  127158  127159  127161  127163  127167  127169  127173  127175  127179  127185  127187  127193  127197  127199  127203  127209  127215  127217  127223  127227  127229  127235  127239  127245  127253  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(26):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商場購進(jìn)一種單價為40元的籃球,如果以單價50元出售,那么每月可售出500個,根據(jù)銷售經(jīng)驗(yàn),售價每提高1元,銷售量相應(yīng)減少10個;
(1)假設(shè)銷售單價提高x元,那么銷售每個籃球所獲得的利潤是______元;這種籃球每月的銷售量是______個;(用含x的代數(shù)式表示)
(2)8000元是否為每月銷售這種籃球的最大利潤?如果是,請說明理由;如果不是,請求出最大利潤,此時籃球的售價應(yīng)定為多少元?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(26):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

現(xiàn)有邊長為180厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計(jì)并制成一個開口的水槽,使水槽能通過的水的流量最大.
某校九年級(2)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對水槽的橫截面,進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設(shè)BC=x厘米,該水槽的橫截面面積為y厘米2,請你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時,y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大。
(2)假如你是該興趣小組中的成員,請你再提供一種方案,使你所設(shè)計(jì)的水槽的橫截面面積更大.畫出你設(shè)計(jì)的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(26):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

用鋁合金型材做一個形狀如圖1所示的矩形窗框,設(shè)窗框的一邊為xm,窗戶的透光面積為ym2,y與x的函數(shù)圖象如圖2所示.
(1)觀察圖象,當(dāng)x為何值時,窗戶透光面積最大?
(2)當(dāng)窗戶透光面積最大時,窗框的另一邊長是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(26):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某商場將進(jìn)貨價為每個30元的臺燈以每個40元出售,平均每月能售出600個.經(jīng)過調(diào)查表明:如果每個臺燈的售價每上漲1元,那么其銷售數(shù)量就將減少10個.為了實(shí)現(xiàn)平均每月10000元的銷售利潤,問每個臺燈的售價應(yīng)定為多少元?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(26):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某公司年初推出一種高新技術(shù)產(chǎn)品,該產(chǎn)品銷售的累積利潤y(萬元)與銷售時間x(月)之間的關(guān)系(即前x個月的利潤總和y與x之間的關(guān)系)為y=x2-2x(x>0).
(1)求出這個函數(shù)圖象的頂點(diǎn)坐標(biāo)和對稱軸;
(2)請?jiān)谒o坐標(biāo)系中,畫出這個函數(shù)圖象的簡圖;
(3)根據(jù)函數(shù)圖象,你能否判斷出公司的這種新產(chǎn)品銷售累積利潤是從什么時間開始盈利的?
(4)這個公司第6個月所獲的利潤是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(26):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

隨著海峽兩岸交流日益增強(qiáng),通過“零關(guān)稅”進(jìn)入我市的一種臺灣水果,其進(jìn)貨成本是每噸0.5萬元,這種水果市場上的銷售量y(噸)是每噸的銷售價x(萬元)的一次函數(shù),且x=0.6時,y=2.4;x=1時,y=2.
(1)求出銷售量y(噸)與每噸的銷售價x(萬元)之間的函數(shù)關(guān)系式;
(2)若銷售利潤為w(萬元),請寫出w與x之間的函數(shù)關(guān)系式,并求出銷售價為每噸2萬元時的銷售利潤.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(26):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,五邊形ABCDE為一塊土地的示意圖.四邊形AFDE為矩形,AE=130米,ED=100米,BC截∠F交AF、FD分別于點(diǎn)B、C,且BF=FC=10米.
(1)現(xiàn)要在此土地上劃出一塊矩形土地NPME作為安置區(qū),且點(diǎn)P在線段BC上,若設(shè)PM的長為x米,矩形NPME的面積為y平方米,求y與x的函數(shù)關(guān)系式,并求當(dāng)x為何值時,安置區(qū)的面積y最大,最大面積為多少?
(2)因三峽庫區(qū)移民的需要,現(xiàn)要在此最大面積的安置區(qū)內(nèi)安置30戶移民農(nóng)戶,每戶建房占地100平方米,政府給予每戶4萬元補(bǔ)助,安置區(qū)內(nèi)除建房外的其余部分每平方米政府投入100元作為基礎(chǔ)建設(shè)費(fèi),在五邊形ABCDE這塊土地上,除安置區(qū)外的部分每平方米政府投入200元作為設(shè)施施工費(fèi).為減輕政府的財政壓力,決定鼓勵一批非安置戶到此安置區(qū)內(nèi)建房,每戶建房占地120平方米,但每戶非安置戶應(yīng)向政府交納土地使用費(fèi)3萬元.為保護(hù)環(huán)境,建房總面積不得超過安置區(qū)面積的50%.若除非安置戶交納的土地使用費(fèi)外,政府另外投入資金150萬元,請問能否將這30戶移民農(nóng)戶全部安置?并說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(26):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

小明用科學(xué)記算器,結(jié)合已經(jīng)學(xué)習(xí)的某個函數(shù)編了一個計(jì)算程序.下表是科學(xué)記算器中輸入的一些數(shù)據(jù)和經(jīng)過該程序計(jì)算后計(jì)算器顯示的相應(yīng)結(jié)果:
 輸入-4 -3 -1 3
 顯示-5  03-5 -12 
現(xiàn)以輸入值作為橫坐標(biāo),對應(yīng)的顯示值作為縱坐標(biāo).
(1)請你在學(xué)過的幾個常見函數(shù)中選擇一個,求出這個函數(shù)的解析式,使這個函數(shù)與小明的計(jì)算程序相對應(yīng);
(2)畫出(1)中所求函數(shù)的圖象,根據(jù)圖象寫出當(dāng)計(jì)算器中顯示值為負(fù)數(shù)時,計(jì)算器的輸入值的取值范圍.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(26):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,宜昌西陵長江大橋?qū)儆趻佄锞形懸索橋,橋面(視為水平的)與主懸鋼索之間用垂直鋼拉索連接.橋兩端主塔塔頂?shù)暮0胃叨染?87.5米,橋的單孔跨度(即兩主塔之間的距離)900米,這里水面的海拔高度是74米.若過主塔塔頂?shù)闹鲬忆撍鳎ㄒ暈閽佄锞)最低點(diǎn)離橋面(視為直線)的高度為0.5米,橋面離水面的高度為19米.請你計(jì)算距離橋兩端主塔100米處垂直鋼拉索的長.(結(jié)果精確到0.1米)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(26):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

近幾年,被稱為“園林城市,生態(tài)家園”的宿遷旅游業(yè)得到長足的發(fā)展,到宿遷觀光旅游的客人越來越多,“真如禪寺”景點(diǎn)每天都吸引大量的游客前來觀光.事實(shí)表明,如果游客過多,不利于保護(hù)珍貴文物,為了實(shí)施可持續(xù)發(fā)展,兼顧社會效益和經(jīng)濟(jì)效益,該景點(diǎn)擬采取浮動門票價格的方法來控制游客人數(shù).已知每張門票原價為40元,現(xiàn)設(shè)浮動門票為每張x元,且40≤x≤70,經(jīng)市場調(diào)研發(fā)現(xiàn)一天游覽人數(shù)y與票價x之間存在著如圖所示的一次函數(shù)關(guān)系.
(1)根據(jù)圖象,求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)該景點(diǎn)一天的門票收入為W元.
①試用x代數(shù)式表示W(wǎng);
②試問:當(dāng)門票定為多少時,該景點(diǎn)一天的門票收入最高?最高門票收入是多少?

查看答案和解析>>

同步練習(xí)冊答案