相關(guān)習(xí)題
 0  127064  127072  127078  127082  127088  127090  127094  127100  127102  127108  127114  127118  127120  127124  127130  127132  127138  127142  127144  127148  127150  127154  127156  127158  127159  127160  127162  127163  127164  127166  127168  127172  127174  127178  127180  127184  127190  127192  127198  127202  127204  127208  127214  127220  127222  127228  127232  127234  127240  127244  127250  127258  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

我州有一種可食用的野生菌,上市時(shí),外商李經(jīng)理按市場價(jià)格30元/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預(yù)測,該野生菌的市場價(jià)格將以每天每千克上漲1元;但冷凍存放這批野生菌時(shí)每天需要支出各種費(fèi)用合計(jì)310元,而且這類野生菌在冷庫中最多保存160天,同時(shí),平均每天有3千克的野生菌損壞不能出售.
(1)設(shè)x天后每千克該野生菌的市場價(jià)格為y元,試寫出y與x之間的函數(shù)關(guān)系式.
(2)若存放x天后,將這批野生菌一次性出售,設(shè)這批野生菌的銷售總額為P元,試寫出P與x之間的函數(shù)關(guān)系式.
(3)李經(jīng)理將這批野生茵存放多少天后出售可獲得最大利潤W元?
(利潤=銷售總額-收購成本-各種費(fèi)用)

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

一家電腦公司推出一款新型電腦,投放市場以來的利潤情況可以看做是拋物線的一部分,請結(jié)合下面的圖象解答以下問題:
(1)求該拋物線對應(yīng)的二次函數(shù)的解析式;
(2)該公司在經(jīng)營此款電腦過程中,第幾個(gè)月的利潤最大,最大利潤是多少;
(3)若照此經(jīng)營下去,請你結(jié)合所學(xué)的知識(shí),對公司在此款電腦的經(jīng)營狀況(是否虧損何時(shí)虧損)作出預(yù)測.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

一座拱橋的輪廓是拋物線型(如圖1),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標(biāo)系中(如圖2),求拋物線的解析式;
(2)求支柱EF的長度;
(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計(jì))?請說明你的理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某人定制了一批地磚,每塊地磚(如圖(1)所示)是邊長為0.4米的正方形ABCD,點(diǎn)E、F分別在邊BC和CD上,△CFE、△ABE和四邊形AEFD均由單一材料制成,制成△CFE、△ABE和四邊形AEFD的三種材料的每平方米價(jià)格依次為30元、20元、10元,若將此種地磚按圖(2)所示的形式鋪設(shè),且能使中間的陰影部分組成四邊形EFGH.
(1)判斷圖(2)中四邊形EFGH是何形狀,并說明理由;
(2)E、F在什么位置時(shí),定制這批地磚所需的材料費(fèi)用最?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

跳繩時(shí),繩甩到最高處時(shí)的形狀是拋物線.正在甩繩的甲、乙兩名同學(xué)拿繩的手間距AB為6米,到地面的距離AO和BD均為0.9米,身高為1.4米的小麗站在距點(diǎn)O的水平距離為1米的點(diǎn)F處,繩子甩到最高處時(shí)剛好通過她的頭頂點(diǎn)E.以點(diǎn)O為原點(diǎn)建立如圖所示的平面直角坐標(biāo)系,設(shè)此拋物線的解析式為y=ax2+bx+0.9.
(1)求該拋物線的解析式;
(2)如果小華站在OD之間,且離點(diǎn)O的距離為3米,當(dāng)繩子甩到最高處時(shí)剛好通過他的頭頂,請你算出小華的身高;
(3)如果身高為1.4米的小麗站在OD之間,且離點(diǎn)O的距離為t米,繩子甩到最高處時(shí)超過她的頭頂,請結(jié)合圖象,寫出t的取值范圍______.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

四川汶川大地震發(fā)生后,我市某工廠A車間接到生產(chǎn)一批帳篷的訂單,要求必須在12天(含12天)內(nèi)完成.已知每頂帳篷的成本價(jià)為800元,該車間平時(shí)每天能生產(chǎn)帳篷20頂.為了加快進(jìn)度,車間采取工人分批日夜加班,機(jī)器滿負(fù)荷運(yùn)轉(zhuǎn)的生產(chǎn)方式,生產(chǎn)效率得到了提高.這樣,第一天生產(chǎn)了22頂,以后每天生產(chǎn)的帳篷都比前一天多2頂.由于機(jī)器損耗等原因,當(dāng)每天生產(chǎn)的帳篷達(dá)到30頂后,每增加1頂帳篷,當(dāng)天生產(chǎn)的所有帳篷,平均每頂?shù)某杀揪驮黾?0元.設(shè)生產(chǎn)這批帳篷的時(shí)間為x天,每天生產(chǎn)的帳篷為y頂.
(1)直接寫出y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.
(2)若這批帳篷的訂購價(jià)格為每頂1200元,該車間決定把獲得最高利潤的那一天的全部利潤捐獻(xiàn)給災(zāi)區(qū).設(shè)該車間每天的利潤為W元,試求出W與x之間的函數(shù)關(guān)系式,并求出該項(xiàng)車間捐獻(xiàn)給災(zāi)區(qū)多少錢?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

研究所對某種新型產(chǎn)品的產(chǎn)銷情況進(jìn)行了研究,為投資商在甲、乙兩地生產(chǎn)并銷售該產(chǎn)品提供了如下成果:第一年的年產(chǎn)量為x(噸)時(shí),所需的全部費(fèi)用y(萬元)與x滿足關(guān)系式y(tǒng)=x2+5x+90,投入市場后當(dāng)年能全部售出,且在甲、乙兩地每噸的售價(jià)p,p(萬元)均與x滿足一次函數(shù)關(guān)系.(注:年利潤=年銷售額-全部費(fèi)用)
(1)成果表明,在甲地生產(chǎn)并銷售x噸時(shí),P=-x+14,請你用含x的代數(shù)式表示甲地當(dāng)年的年銷售額,并求年利潤W(萬元)與x之間的函數(shù)關(guān)系式;
(2)成果表明,在乙地生產(chǎn)并銷售x噸時(shí),P=-+n(n為常數(shù)),且在乙地當(dāng)年的最大年利潤為35萬元.試確定n的值;
(3)受資金、生產(chǎn)能力等多種因素的影響,某投資商計(jì)劃第一年生產(chǎn)并銷售該產(chǎn)品18噸,根據(jù)(1),(2)中的結(jié)果,請你通過計(jì)算幫他決策,選擇在甲地還是乙地產(chǎn)銷才能獲得較大的年利潤?
參考公式:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)是

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(23):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

小李想用籬笆圍成一個(gè)周長為60米的矩形場地,矩形面積S(單位:平方米)隨矩形一邊長x(單位:米)的變化而變化.
(1)求S與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)當(dāng)x是多少時(shí),矩形場地面積S最大,最大面積是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(25):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

丁丁推鉛球的出手高度為1.6m,在如圖所示的拋物線y=-0.1(x-k)2+2.5上,求鉛球的落點(diǎn)與丁丁的距離.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(25):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某農(nóng)場計(jì)劃建一個(gè)養(yǎng)雞場,為了節(jié)約材料,雞場一邊靠著原有的-堵墻(墻足夠長),另外的部分用30米的竹籬笆圍成,現(xiàn)有兩種方案:①圍成一個(gè)矩形(如左圖);②圍成一個(gè)半圓形(如右圖).設(shè)矩形的面積為S1平方米,寬為x米,半圓形的面積為S2平方米,半徑為r米,請你通過計(jì)算幫助農(nóng)場主選擇一個(gè)圍成區(qū)域面積最大的方案.(π≈3)

查看答案和解析>>

同步練習(xí)冊答案