相關(guān)習(xí)題
 0  128391  128399  128405  128409  128415  128417  128421  128427  128429  128435  128441  128445  128447  128451  128457  128459  128465  128469  128471  128475  128477  128481  128483  128485  128486  128487  128489  128490  128491  128493  128495  128499  128501  128505  128507  128511  128517  128519  128525  128529  128531  128535  128541  128547  128549  128555  128559  128561  128567  128571  128577  128585  366461 

科目: 來源:第1章《解直角三角形》中考題集(26):1.3 解直角三角形(解析版) 題型:解答題

如圖,A、B、C表示建筑在一座比較險峻的名山上的三個纜車站的位置,AB、BC表示連接三個纜車站的鋼纜.已知A、B、C所處位置的海拔高度分別為124m、400m、1000m,如圖建立直角坐標系,即A(a,124)、B(b,400),C(c,1100),若直線AB的解析式為y=x+4,直線BC與水平線BC1的交角為45度.
(1)分別求出A、B、C三個纜車站所在位置的坐標;
(2)求纜車從B站出發(fā)到達C站單向運行的距離.(精確到1m).

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(26):1.3 解直角三角形(解析版) 題型:解答題

從甲、乙兩題中選做一題即可.如果兩題都做,只以甲題計分.
題甲:如圖,反比例函數(shù)的圖象與一次函數(shù)y=mx+b的圖象交于A(1,3),B(n,-1)兩點.
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象回答:當(dāng)x取何值時,反比例函數(shù)的值大于一次函數(shù)的值.

題乙:如圖,在矩形ABCD中,AB=4,AD=10.直角尺的直角頂點P在AD上滑動時(點P與A,D不重合),一直角邊經(jīng)過點C,另一直角邊AB交于點E.我們知道,結(jié)論“Rt△AEP∽Rt△DPC”成立.
(1)當(dāng)∠CPD=30°時,求AE的長;
(2)是否存在這樣的點P,使△DPC的周長等于△AEP周長的2倍?若存在,求出DP的長;若不存在,請說明理由.
我選做的是______.

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(26):1.3 解直角三角形(解析版) 題型:解答題

已知直角梯形紙片OABC在平面直角坐標系中的位置如圖所示,四個頂點的坐標分別為O(0,0),A(10,0),B(8,2),C(0,2),點T在線段OA上(不與線段端點重合),將紙片折疊,使點A落在射線AB上(記為點A′),折痕經(jīng)過點T,折痕TP與射線AB交于點P,設(shè)點T的橫坐標為t,折疊后紙片重疊部分(圖中的陰影部分)的面積為S.
(1)求∠OAB的度數(shù),并求當(dāng)點A′在線段AB上時,S關(guān)于t的函數(shù)關(guān)系式;
(2)當(dāng)紙片重疊部分的圖形是四邊形時,求t的取值范圍;
(3)S存在最大值嗎?若存在,求出這個最大值,并求此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(26):1.3 解直角三角形(解析版) 題型:解答題

如圖,矩形ABCD中,AB=8,BC=10,點P在矩形的邊DC上由D向C運動.沿直線AP翻折△ADP,形成如下四種情形.設(shè)DP=x,△ADP和矩形重疊部分(陰影)的面積為y.

(1)如圖丁,當(dāng)點P運動到與C重合時,求重疊部分的面積y;
(2)如圖乙,當(dāng)點P運動到何處時,翻折△ADP后,點D恰好落在BC邊上這時重疊部分的面積y等于多少?
(3)閱讀材料:已知銳角α≠45°,tan2α是角2α的正切值,它可以用角α的正切值tanα來表示,即(α≠45°).根據(jù)上述閱讀材料,求出用x表示y的解析式,并指出x的取值范圍.
(提示:在圖丙中可設(shè)∠DAP=a)

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(26):1.3 解直角三角形(解析版) 題型:解答題

在矩形ABCD中,點E是AD邊上一點,連接BE,且∠ABE=30°,BE=DE,連接BD.點P從點E出發(fā)沿射線ED運動,過點P作PQ∥BD交直線BE于點Q.
(1)當(dāng)點P在線段ED上時(如圖1),求證:BE=PD+PQ;
(2)若BC=6,設(shè)PQ長為x,以P、Q、D三點為頂點所構(gòu)成的三角形面積為y,求y與x的函數(shù)關(guān)系式(不要求寫出自變量x的取值范圍);
(3)在②的條件下,當(dāng)點P運動到線段ED的中點時,連接QC,過點P作PF⊥QC,垂足為F,PF交對角線BD于點G(如圖2),求線段PG的長.

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(26):1.3 解直角三角形(解析版) 題型:解答題

將一個正方形紙板(如圖-)沿虛線剪下,得到七塊幾何圖形的紙板(其中①③⑤⑥⑦是等腰直角三角形,②是正方形)我們把這七塊紙板叫做七巧板.現(xiàn)用七巧板拼出一個圖形,其空隙部分是一個箭頭(如圖二).

(1)請在圖二中用實線畫出拼圖的痕跡(如實線DP);
(2)如果圖一中大正方形紙板的邊長為10,計算圖二中“箭頭”的面積(即封閉平面圖形ABCDEFG的面積).

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(26):1.3 解直角三角形(解析版) 題型:解答題

如圖,已知線段AB,分別以A、B為圓心,大于AB長為半徑畫弧,兩弧相交于點C、Q,連接CQ與AB相交于點D,連接AC,BC.那么:
(1)∠ADC=______度;
(2)當(dāng)線段AB=4,∠ACB=60°時,∠ACD=30度,△ABC的面積等于______

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(27):1.3 解直角三角形(解析版) 題型:解答題

探究問題:
(1)閱讀理解:
①如圖(A),在已知△ABC所在平面上存在一點P,使它到三角形頂點的距離之和最小,則稱點P為△ABC的費馬點,此時PA+PB+PC的值為△ABC的費馬距離;
②如圖(B),若四邊形ABCD的四個頂點在同一圓上,則有AB•CD+BC•DA=AC•BD.此為托勒密定理;

(2)知識遷移:
①請你利用托勒密定理,解決如下問題:
如圖(C),已知點P為等邊△ABC外接圓的上任意一點.求證:PB+PC=PA;
②根據(jù)(2)①的結(jié)論,我們有如下探尋△ABC(其中∠A、∠B、∠C均小于120°)的費馬點和費馬距離的方法:
第一步:如圖(D),在△ABC的外部以BC為邊長作等邊△BCD及其外接圓;
第二步:在上任取一點P′,連接P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+______;
第三步:請你根據(jù)(1)①中定義,在圖(D)中找出△ABC的費馬點P,并請指出線段______的長度即為△ABC的費馬距離.

(3)知識應(yīng)用:
2010年4月,我國西南地區(qū)出現(xiàn)了罕見的持續(xù)干旱現(xiàn)象,許多村莊出現(xiàn)了人、畜飲水困難,為解決老百姓的飲水問題,解放軍某部來到云南某地打井取水.
已知三村莊A、B、C構(gòu)成了如圖(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),現(xiàn)選取一點P打水井,使從水井P到三村莊A、B、C所鋪設(shè)的輸水管總長度最小,求輸水管總長度的最小值.

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(27):1.3 解直角三角形(解析版) 題型:解答題

如圖1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等邊三角形,E是AB的中點,連接CE并延長交AD于F.
(1)求證:①△AEF≌△BEC;②四邊形BCFD是平行四邊形;
(2)如圖2,將四邊形ACBD折疊,使D與C重合,HK為折痕,求sin∠ACH的值.

查看答案和解析>>

科目: 來源:第1章《解直角三角形》中考題集(27):1.3 解直角三角形(解析版) 題型:解答題

如圖,已知P為∠AOB的邊OA上的一點,以P為頂點的∠MPN的兩邊分別交射線OB于M、N兩點,且∠MPN=∠AOB=α(α為銳角).當(dāng)∠MPN以點P為旋轉(zhuǎn)中心,PM邊與PO重合的位置開始,按逆時針方向旋轉(zhuǎn)(∠MPN保持不變)時,M、N兩點在射線OB上同時以不同的速度向右平行移動.設(shè)OM=x,ON=y(y>x>0),△POM的面積為S.若sinα=,OP=2.
(1)當(dāng)∠MPN旋轉(zhuǎn)30°(即∠OPM=30°)時,求點N移動的距離;
(2)求證:△OPN∽△PMN;
(3)寫出y與x之間的關(guān)系式;
(4)試寫出S隨x變化的函數(shù)關(guān)系式,并確定S的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案