相關(guān)習(xí)題
 0  129582  129590  129596  129600  129606  129608  129612  129618  129620  129626  129632  129636  129638  129642  129648  129650  129656  129660  129662  129666  129668  129672  129674  129676  129677  129678  129680  129681  129682  129684  129686  129690  129692  129696  129698  129702  129708  129710  129716  129720  129722  129726  129732  129738  129740  129746  129750  129752  129758  129762  129768  129776  366461 

科目: 來源:第26章《二次函數(shù)》中考題集(27):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,拋物線y=ax2+bx經(jīng)過點A(4,0),B(2,2).連接OB,AB.
(1)求該拋物線的解析式;
(2)求證:△OAB是等腰直角三角形;
(3)將△OAB繞點O按順時針方向旋轉(zhuǎn)135°得到△OA′B′,寫出△OA′B′的邊A′B′的中點P的坐標(biāo).試判斷點P是否在此拋物線上,并說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(27):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖所示,拋物線與x軸交于點A(-1,0)、B(3,0)兩點,與y軸交于點C(0,-3).以AB為直徑作⊙M,過拋物線上一點P作⊙M的切線PD,切點為D,并與⊙M的切線AE相交于點E,連接DM并延長交⊙M于點N,連接AN、AD.
(1)求拋物線所對應(yīng)的函數(shù)關(guān)系式及拋物線的頂點坐標(biāo);
(2)若四邊形EAMD的面積為,求直線PD的函數(shù)關(guān)系式;
(3)拋物線上是否存在點P,使得四邊形EAMD的面積等于△DAN的面積?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(27):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

(1)探究新知:
①如圖1,已知AD∥BC,AD=BC,點M,N是直線CD上任意兩點.
求證:△ABM與△ABN的面積相等.
②如圖2,已知AD∥BE,AD=BE,AB∥CD∥EF,點M是直線CD上任一點,點G是直線EF上任一點,試判斷△ABM與△ABG的面積是否相等,并說明理由.
(2)結(jié)論應(yīng)用:
如圖3,拋物線y=ax2+bx+c的頂點為C(1,4),交x軸于點A(3,0),交y軸于點D,試探究在拋物線y=ax2+bx+c上是否存在除點C以外的點E,使得△ADE與△ACD的面積相等?若存在,請求出此時點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(27):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,已知拋物線y=+bx+c與y軸相交于C,與x軸相交于A、B,點A的坐標(biāo)為(2,0),點C的坐標(biāo)為(0,-1).
(1)求拋物線的解析式;
(2)點E是線段AC上一動點,過點E作DE⊥x軸于點D,連接DC,當(dāng)△DCE的面積最大時,求點D的坐標(biāo);
(3)在直線BC上是否存在一點P,使△ACP為等腰三角形?若存在,求點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(27):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,已知點A、B、C的坐標(biāo)分別為(-1,0),(5,0),(0,2).
(1)求過A、B、C三點的拋物線解析式;
(2)若點P從A點出發(fā),沿x軸正方向以每秒1個單位長度的速度向B點移動,連接PC并延長到點E,使CE=PC,將線段PE繞點P順時針旋轉(zhuǎn)90°得到線段PF,連接FB.若點P運動的時間為t秒,(0≤t≤6)設(shè)△PBF的面積為S;
①求S與t的函數(shù)關(guān)系式;
②當(dāng)t是多少時,△PBF的面積最大,最大面積是多少?
(3)點P在移動的過程中,△PBF能否成為直角三角形?若能,直接寫出點F的坐標(biāo);若不能,請說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(27):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,拋物線y=-x2+c與x軸交于點A、B,且經(jīng)過點D(-
(1)求c;
(2)若點C為拋物線上一點,且直線AC把四邊形ABCD分成面積相等的兩部分,試說明AC平分BD,且求出直線AC的解析式;
(3)x軸上方的拋物線y=-x2+c上是否存在兩點P、Q,滿足Rt△AQP全等于Rt△ABP?若存在,求出P、Q兩點;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(27):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

已知拋物線y=x2+bx+c交x軸于A(1,0)、B(3,0)兩點,交y軸于點C,其頂點為D.
(1)求b、c的值并寫出拋物線的對稱軸;
(2)連接BC,過點O作直線OE⊥BC交拋物線的對稱軸于點E.求證:四邊形ODBE是等腰梯形;
(3)拋物線上是否存在點Q,使得△OBQ的面積等于四邊形ODBE的面積的?若存在,求點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(27):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖,以A為頂點的拋物線與y軸交于點B、已知A、B兩點的坐標(biāo)分別為(3,0)、(0,4).
(1)求拋物線的解析式;
(2)設(shè)M(m,n)是拋物線上的一點(m、n為正整數(shù)),且它位于對稱軸的右側(cè).若以M、B、O、A為頂點的四邊形四條邊的長度是四個連續(xù)的正整數(shù),求點M的坐標(biāo);
(3)在(2)的條件下,試問:對于拋物線對稱軸上的任意一點P,PA2+PB2+PM2>28是否總成立?請說明理由.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(27):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

已知:拋物線y=(k-1)x2+2kx+k-2與x軸有兩個不同的交點.
(1)求k的取值范圍;
(2)當(dāng)k為整數(shù),且關(guān)于x的方程3x=kx-1的解是負(fù)數(shù)時,求拋物線的解析式;
(3)在(2)的條件下,若在拋物線和x軸所圍成的封閉圖形內(nèi)畫出一個最大的正方形,使得正方形的一邊在x軸上,其對邊的兩個端點在拋物線上,試求出這個最大正方形的邊長?

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(27):26.3 實際問題與二次函數(shù)(解析版) 題型:解答題

如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+c與x軸正半軸交于點F(16,0),與y軸正半軸交于點E(0,16),邊長為16的正方形ABCD的頂點D與原點O重合,頂點A與點E重合,頂點C與點F重合.
(1)求拋物線的函數(shù)表達(dá)式;
(2)如圖2,若正方形ABCD在平面內(nèi)運動,并且邊BC所在的直線始終與x軸垂直,拋物線始終與邊AB交于點P且同時與邊CD交于點Q(運動時,點P不與A,B兩點重合,點Q不與C,D兩點重合).設(shè)點A的坐標(biāo)為(m,n)(m>0).
①當(dāng)PO=PF時,分別求出點P和點Q的坐標(biāo);
②在①的基礎(chǔ)上,當(dāng)正方形ABCD左右平移時,請直接寫出m的取值范圍;
③當(dāng)n=7時,是否存在m的值使點P為AB邊的中點?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案