相關(guān)習(xí)題
 0  129592  129600  129606  129610  129616  129618  129622  129628  129630  129636  129642  129646  129648  129652  129658  129660  129666  129670  129672  129676  129678  129682  129684  129686  129687  129688  129690  129691  129692  129694  129696  129700  129702  129706  129708  129712  129718  129720  129726  129730  129732  129736  129742  129748  129750  129756  129760  129762  129768  129772  129778  129786  366461 

科目: 來源:第26章《二次函數(shù)》中考題集(22):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

某市種植某種綠色蔬菜,全部用來出口.為了擴(kuò)大出口規(guī)模,該市決定對(duì)這種蔬菜的種植實(shí)行政府補(bǔ)貼,規(guī)定每種植-畝這種蔬菜一次性補(bǔ)貼菜農(nóng)若干元.經(jīng)調(diào)查,種植畝數(shù)y(畝)與補(bǔ)貼數(shù)額x(元)之間大致滿足如圖1所示的一次函數(shù)關(guān)系.隨著補(bǔ)貼數(shù)額x的不斷增大,出口量也不斷增加,但每畝蔬菜的收益z(元)會(huì)相應(yīng)降低,且z與x之間也大致滿足如圖2所示的一次函數(shù)關(guān)系.
(1)在政府未出臺(tái)補(bǔ)貼措施前,該市種植這種蔬菜的總收益額為多少?
(2)分別求出政府補(bǔ)貼政策實(shí)施后,種植畝數(shù)y和每畝蔬菜的收益z與政府補(bǔ)貼數(shù)額x之間的函數(shù)關(guān)系式;
(3)要使全市這種蔬菜的總收益w(元)最大,政府應(yīng)將每畝補(bǔ)貼數(shù)額x定為多少?并求出總收益w的最大值.

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(22):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

某生物科技發(fā)展公司投資2000萬元,研制出一種綠色保健食品.已知該產(chǎn)品的成本為40元/件,試銷時(shí),售價(jià)不低于成本價(jià),又不高于180元/件.經(jīng)市場(chǎng)調(diào)查知,年銷售量y(萬件)與銷售單位x(元/件)的關(guān)系滿足下表所示的規(guī)律.
銷售單價(jià)x(元/件)6065708085
年銷售量y(萬件)140135130120115
(1)y與x之間的函數(shù)關(guān)系式是______,自變量x的取值范圍為______;
(2)經(jīng)測(cè)算:年銷售量不低于90萬件時(shí),每件產(chǎn)品成本降低2元,設(shè)銷售該產(chǎn)品年獲利潤(rùn)為W(萬元)(W=年銷售額-成本-投資),求出年銷售量低于90萬件和不低于90萬件時(shí),W與x之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,當(dāng)銷售單位定為多少時(shí),公司銷售這種產(chǎn)品年獲利潤(rùn)最大?最大利潤(rùn)為多少萬元?

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(22):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

某賓館有客房90間,當(dāng)每間客房的定價(jià)為每天140元時(shí),客房會(huì)全部住滿.當(dāng)每間客房每天的定價(jià)每漲10元時(shí),就會(huì)有5間客房空閑.如果旅客居住客房,賓館需對(duì)每間客房每天支出60元的各種費(fèi)用.
(1)請(qǐng)寫出該賓館每天的利潤(rùn)y(元)與每間客房漲價(jià)x(元)之間的函數(shù)關(guān)系式;
(2)設(shè)某天的利潤(rùn)為8000元,8000元的利潤(rùn)是否為該天的最大利潤(rùn)?如果是,請(qǐng)說明理由;如果不是,請(qǐng)求出最大利潤(rùn),并指出此時(shí)客房定價(jià)應(yīng)為多少元?
(3)請(qǐng)回答客房定價(jià)在什么范圍內(nèi)賓館就可獲得利潤(rùn)?

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(22):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

某產(chǎn)品第一季度每件成本為50元,第二三季度每件產(chǎn)品平均降低成本的百分率為x.
(1)衣用含x的代數(shù)式表示第二季度每件產(chǎn)品的成本;
(2)如果第三季度每件產(chǎn)品成本比第一季度少9.5元,試求x的值;
(3)該產(chǎn)品第二季度每件的銷售價(jià)為60元,第三季度每件的銷售價(jià)比第二季度有所下降,若下降的百分率與第二、三季度每件產(chǎn)品平均降低成本的百分率相同,且第三季度每件產(chǎn)品的銷售價(jià)不低于48元,設(shè)第三季度每件產(chǎn)品獲得的利潤(rùn)為y元,試求y與x的函數(shù)關(guān)系式,并利用函數(shù)圖象與性質(zhì)求y的最大值.(注:利潤(rùn)=銷售價(jià)-成本)

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(22):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

王亮同學(xué)善于改進(jìn)學(xué)習(xí)方法,他發(fā)現(xiàn)對(duì)解題過程進(jìn)行回顧反思,效果會(huì)更好.某一天他利用30分鐘時(shí)間進(jìn)行自主學(xué)習(xí).假設(shè)他用于解題的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖甲所示,用于回顧反思的時(shí)間x(單位:分鐘)與學(xué)習(xí)收益量y的關(guān)系如圖乙所示(其中OA是拋物線的一部分,A為拋物線的頂點(diǎn)),且用于回顧反思的時(shí)間不超過用于解題的時(shí)間.

(1)求王亮解題的學(xué)習(xí)收益量y與用于解題的時(shí)間x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(2)求王亮回顧反思的學(xué)習(xí)收益量y與用于回顧反思的時(shí)間x之間的函數(shù)關(guān)系式;
(3)王亮如何分配解題和回顧反思的時(shí)間,才能使這30分鐘的學(xué)習(xí)收益總量最大?
(學(xué)習(xí)收益總量=解題的學(xué)習(xí)收益量+回顧反思的學(xué)習(xí)收益量)

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(22):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

某服裝公司試銷一種成本為每件50元的T恤衫,規(guī)定試銷時(shí)的銷售單價(jià)不低于成本價(jià),又不高于每件70元,試銷中銷售量y(件)與銷售單價(jià)x(元)的關(guān)系可以近似的看作一次函數(shù)(如圖).
(1)求y與x之間的函數(shù)關(guān)系式;
(2)設(shè)公司獲得的總利潤(rùn)(總利潤(rùn)=總銷售額-總成本)為P元,求P與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;根據(jù)題意判斷:當(dāng)x取何值時(shí),P的值最大,最大值是多少?

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(22):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

枇杷是莆田名果之一,某果園有100棵枇杷樹.每棵平均產(chǎn)量為40千克,現(xiàn)準(zhǔn)備多種一些枇杷樹以提高產(chǎn)量,但是如果多種樹,那么樹與樹之間的距離和每一棵數(shù)接受的陽光就會(huì)減少,根據(jù)實(shí)踐經(jīng)驗(yàn),每多種一棵樹,投產(chǎn)后果園中所有的枇杷樹平均每棵就會(huì)減少產(chǎn)量0.25千克,問:增種多少棵枇杷樹,投產(chǎn)后可以使果園枇杷的總產(chǎn)量最多?最多總產(chǎn)量是多少千克?

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(22):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

隨著綠城南寧近幾年城市建設(shè)的快速發(fā)展,對(duì)花木的需求量逐年提高.某園林專業(yè)戶計(jì)劃投資種植花卉及樹木,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),種植樹木的利潤(rùn)y1與投資量x成正比例關(guān)系,如圖①所示;種植花卉的利潤(rùn)y2與投資量x成二次函數(shù)關(guān)系,如圖②所示(注:利潤(rùn)與投資量的單位:萬元)
(1)分別求出利潤(rùn)y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,他至少獲得多少利潤(rùn),他能獲取的最大利潤(rùn)是多少?

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(22):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

青年企業(yè)家劉敏準(zhǔn)備在北川禹里鄉(xiāng)投資修建一個(gè)有30個(gè)房間供旅客住宿的旅游度假村,并將其全部利潤(rùn)用于災(zāi)后重建.據(jù)測(cè)算,若每個(gè)房間的定價(jià)為60元/天,房間將會(huì)住滿;若每個(gè)房間的定價(jià)每增加5元∕天時(shí),就會(huì)有一個(gè)房間空閑.度假村對(duì)旅客住宿的房間將支出各種費(fèi)用20元/天•間(沒住宿的不支出).問房?jī)r(jià)每天定為多少時(shí),度假村的利潤(rùn)最大?

查看答案和解析>>

科目: 來源:第26章《二次函數(shù)》中考題集(22):26.3 實(shí)際問題與二次函數(shù)(解析版) 題型:解答題

我市某工藝廠為配合北京奧運(yùn),設(shè)計(jì)了一款成本為20元∕件的工藝品投放市場(chǎng)進(jìn)行試銷.經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價(jià)x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對(duì)應(yīng)值作為點(diǎn)的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點(diǎn),猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?最大利潤(rùn)是多少?(利潤(rùn)=銷售總價(jià)-成本總價(jià))
(3)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過45元/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤(rùn)最大?

查看答案和解析>>

同步練習(xí)冊(cè)答案