相關(guān)習(xí)題
 0  140042  140050  140056  140060  140066  140068  140072  140078  140080  140086  140092  140096  140098  140102  140108  140110  140116  140120  140122  140126  140128  140132  140134  140136  140137  140138  140140  140141  140142  140144  140146  140150  140152  140156  140158  140162  140168  140170  140176  140180  140182  140186  140192  140198  140200  140206  140210  140212  140218  140222  140228  140236  366461 

科目: 來(lái)源:第2章《二次函數(shù)》?碱}集(19):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長(zhǎng)25m)的空地上修建一個(gè)矩形綠化帶ABCD,綠化帶一邊靠墻,另三邊用總長(zhǎng)為40m的柵欄圍住(如圖4).若設(shè)綠化帶的BC邊長(zhǎng)為xm,綠化帶的面積為ym2
(1)求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)當(dāng)x為何值時(shí),滿(mǎn)足條件的綠化帶的面積最大.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》?碱}集(20):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在Rt△ABC中,∠A=90°,AB=8,AC=6.若動(dòng)點(diǎn)D從點(diǎn)B出發(fā),沿線(xiàn)段BA運(yùn)動(dòng)到點(diǎn)A為止,運(yùn)動(dòng)速度為每秒2個(gè)單位長(zhǎng)度.過(guò)點(diǎn)D作DE∥BC交AC于點(diǎn)E,設(shè)動(dòng)點(diǎn)D運(yùn)動(dòng)的時(shí)間為x秒,AE的長(zhǎng)為y.
(1)求出y關(guān)于x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)求出△BDE的面積S與x之間的函數(shù)關(guān)系式;
(3)當(dāng)x為何值時(shí),△BDE的面積S有最大值,最大值為多少?

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》常考題集(20):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某小區(qū)有一長(zhǎng)100m,寬80m的空地,現(xiàn)將其建成花園廣場(chǎng),設(shè)計(jì)圖案如下,陰影區(qū)域?yàn)榫G化區(qū)(四塊綠化區(qū)是全等矩形),空白區(qū)域?yàn)榛顒?dòng)區(qū),且四周出口一樣寬,寬度不小于50m,不大于60m.預(yù)計(jì)活動(dòng)區(qū)每平方米造價(jià)60元,綠化區(qū)每平方米造價(jià)50元.設(shè)每塊綠化區(qū)的長(zhǎng)邊為x m,短邊為y m,工程總造價(jià)為w元.
(1)寫(xiě)出x的取值范圍;
(2)寫(xiě)出y與x的函數(shù)關(guān)系式;
(3)寫(xiě)出w與x的函數(shù)關(guān)系式;
(4)如果小區(qū)投資46.9萬(wàn)元,問(wèn)能否完成工程任務(wù)?若能,請(qǐng)寫(xiě)出x為整數(shù)的所有工程方案;若不能,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù):≈1.732)

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》?碱}集(20):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某水果批發(fā)商銷(xiāo)售每箱進(jìn)價(jià)為40元的蘋(píng)果,物價(jià)部門(mén)規(guī)定每箱售價(jià)不得高于55元,市場(chǎng)調(diào)查發(fā)現(xiàn),若每箱以50元的價(jià)格調(diào)查,平均每天銷(xiāo)售90箱,價(jià)格每提高1元,平均每天少銷(xiāo)售3箱.
(1)求平均每天銷(xiāo)售量y(箱)與銷(xiāo)售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(2)求該批發(fā)商平均每天的銷(xiāo)售利潤(rùn)w(元)與銷(xiāo)售價(jià)x(元/箱)之間的函數(shù)關(guān)系式.
(3)當(dāng)每箱蘋(píng)果的銷(xiāo)售價(jià)為多少元時(shí),可以獲得最大利潤(rùn)?最大利潤(rùn)是多少?

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》?碱}集(20):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

為保證交通安全,汽車(chē)駕駛員必須知道汽車(chē)剎車(chē)后的停止距離(開(kāi)始剎車(chē)到車(chē)輛停止車(chē)輛行駛的距離)與汽車(chē)行駛速度(開(kāi)始剎車(chē)時(shí)的速度)的關(guān)系,以便及時(shí)剎車(chē).
下表是某款車(chē)在平坦道路上路況良好時(shí)剎車(chē)后的停止距離與汽車(chē)行駛速度的對(duì)應(yīng)值表:
行駛速度(千米/時(shí))406080
停止距離(米)163048
(1)設(shè)汽車(chē)剎車(chē)后的停止距離y(米)是關(guān)于汽車(chē)行駛速度x(千米/時(shí))的函數(shù),給出以下三個(gè)函數(shù):①y=ax+b;②y=(k≠0);③y=ax2+bx,請(qǐng)選擇恰當(dāng)?shù)暮瘮?shù)來(lái)描述停止距離y(米)與汽車(chē)行駛速度x(千米/時(shí))的關(guān)系,說(shuō)明選擇理由,并求出符合要求的函數(shù)的解析式;
(2)根據(jù)你所選擇的函數(shù)解析式,若汽車(chē)剎車(chē)后的停止距離為70米,求汽車(chē)行駛速度.

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》?碱}集(20):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

司機(jī)在駕駛汽車(chē)時(shí),發(fā)現(xiàn)緊急情況到踩下剎車(chē)需要一段時(shí)間,這段時(shí)間叫反應(yīng)時(shí)間.之后還會(huì)繼續(xù)行駛一段距離.我們把司機(jī)從發(fā)現(xiàn)緊急情況到汽車(chē)停止所行駛的這段距離叫“剎車(chē)距離”(如圖).
已知汽車(chē)的剎車(chē)距離s(單位:m)與車(chē)速v(單位:m/s)之同有如下關(guān)系:s=tv+kv2其中t為司機(jī)的反應(yīng)時(shí)間(單位:s),k為制動(dòng)系數(shù).某機(jī)構(gòu)為測(cè)試司機(jī)飲酒后剎車(chē)距離的變化,對(duì)某種型號(hào)的汽車(chē)進(jìn)行了“醉漢”駕車(chē)測(cè)試,已知該型號(hào)汽車(chē)的制動(dòng)系數(shù)k=0.08,并測(cè)得志愿者在未飲酒時(shí)的反應(yīng)時(shí)間t=0.7s
(1)若志愿者未飲酒,且車(chē)速為11m/s,則該汽車(chē)的剎車(chē)距離為多少m(精確到0.1m);
(2)當(dāng)志愿者在喝下一瓶啤酒半小時(shí)后,以17m/s的速度駕車(chē)行駛,測(cè)得剎車(chē)距離為46m.假如該志愿者當(dāng)初是以11m/s的車(chē)速行駛,則剎車(chē)距離將比未飲酒時(shí)增加多少?(精確到0.1m)
(3)假如你以后駕駛該型號(hào)的汽車(chē)以11m/s至17m/s的速度行駛,且與前方車(chē)輛的車(chē)距保持在40m至50m之間.若發(fā)現(xiàn)前方車(chē)輛突然停止,為防止“追尾”.則你的反應(yīng)時(shí)間應(yīng)不超過(guò)多少秒?(精確到0.01s)

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》?碱}集(20):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

某企業(yè)信息部進(jìn)行市場(chǎng)調(diào)研發(fā)現(xiàn):
信息一:如果單獨(dú)投資A種產(chǎn)品,則所獲利潤(rùn)yA(萬(wàn)元)與投資金額x(萬(wàn)元)之間存在正比例函數(shù)關(guān)系:yA=kx,并且當(dāng)投資5萬(wàn)元時(shí),可獲利潤(rùn)2萬(wàn)元;
信息二:如果單獨(dú)投資B種產(chǎn)品,則所獲利潤(rùn)yB(萬(wàn)元)與投資金額x(萬(wàn)元)之間存在二次函數(shù)關(guān)系:yB=ax2+bx,并且當(dāng)投資2萬(wàn)元時(shí),可獲利潤(rùn)2.4萬(wàn)元;當(dāng)投資4萬(wàn)元,可獲利潤(rùn)3.2萬(wàn)元.
(1)請(qǐng)分別求出上述的正比例函數(shù)表達(dá)式與二次函數(shù)表達(dá)式;
(2)如果企業(yè)同時(shí)對(duì)A、B兩種產(chǎn)品共投資10萬(wàn)元,請(qǐng)你設(shè)計(jì)一個(gè)能獲得最大利潤(rùn)的投資方案,并求出按此方案能獲得的最大利潤(rùn)是多少?

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》?碱}集(20):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

工藝商場(chǎng)按標(biāo)價(jià)銷(xiāo)售某種工藝品時(shí),每件可獲利45元;按標(biāo)價(jià)的八五折銷(xiāo)售該工藝品8件與將標(biāo)價(jià)降低35元銷(xiāo)售該工藝品12件所獲利潤(rùn)相等.
(1)該工藝品每件的進(jìn)價(jià)、標(biāo)價(jià)分別是多少元?
(2)若每件工藝品按(1)中求得的進(jìn)價(jià)進(jìn)貨,標(biāo)價(jià)售出,工藝商場(chǎng)每天可售出該工藝品100件.若每件工藝品降價(jià)1元,則每天可多售出該工藝品4件.問(wèn)每件工藝品降價(jià)多少元出售,每天獲得的利潤(rùn)最大?獲得的最大利潤(rùn)是多少元?

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》?碱}集(20):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

王師傅有兩塊板材邊角料,其中一塊是邊長(zhǎng)為60cm的正方形板子;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板子(如圖①).王師傅想將這兩塊板子裁成兩塊全等的矩形板材.他將兩塊板子疊放在一起,使梯形的兩個(gè)直角頂點(diǎn)分別與正方形的兩個(gè)頂點(diǎn)重合,兩塊板子的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理的限制,要求裁出的矩形要以點(diǎn)B為一個(gè)頂點(diǎn).
(1)求FC的長(zhǎng);
(2)利用圖②求出矩形頂點(diǎn)B所對(duì)的頂點(diǎn)到BC邊的距離x(cm)為多少時(shí),矩形的面積y(cm2)最大?最大面積是多少?
(3)若想使裁出的矩形為正方形,試求出面積最大的正方形的邊長(zhǎng).

查看答案和解析>>

科目: 來(lái)源:第2章《二次函數(shù)》常考題集(20):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

南博汽車(chē)城銷(xiāo)售某種型號(hào)的汽車(chē),每輛進(jìn)貨價(jià)為25萬(wàn)元,市場(chǎng)調(diào)研表明:當(dāng)銷(xiāo)售價(jià)為29萬(wàn)元時(shí),平均每周能售出8輛,而當(dāng)銷(xiāo)售價(jià)每降低0.5萬(wàn)元時(shí),平均每周能多售出4輛.如果設(shè)每輛汽車(chē)降價(jià)x萬(wàn)元,每輛汽車(chē)的銷(xiāo)售利潤(rùn)為y萬(wàn)元.(銷(xiāo)售利潤(rùn)=銷(xiāo)售價(jià)-進(jìn)貨價(jià))
(1)求y與x的函數(shù)關(guān)系式;在保證商家不虧本的前提下,寫(xiě)出x的取值范圍;
(2)假設(shè)這種汽車(chē)平均每周的銷(xiāo)售利潤(rùn)為z萬(wàn)元,試寫(xiě)出z與x之間的函數(shù)關(guān)系式;
(3)當(dāng)每輛汽車(chē)的定價(jià)為多少萬(wàn)元時(shí),平均每周的銷(xiāo)售利潤(rùn)最大,最大利潤(rùn)是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案