相關(guān)習(xí)題
 0  140148  140156  140162  140166  140172  140174  140178  140184  140186  140192  140198  140202  140204  140208  140214  140216  140222  140226  140228  140232  140234  140238  140240  140242  140243  140244  140246  140247  140248  140250  140252  140256  140258  140262  140264  140268  140274  140276  140282  140286  140288  140292  140298  140304  140306  140312  140316  140318  140324  140328  140334  140342  366461 

科目: 來源:第2章《二次函數(shù)》中考題集(33):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A、C的坐標(biāo)分別為(-1,0)、(0,-),點(diǎn)B在x軸上.已知某二次函數(shù)的圖象經(jīng)過A、B、C三點(diǎn),且它的對稱軸為直線x=1,點(diǎn)P為直線BC下方的二次函數(shù)圖象上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與B、C不重合),過點(diǎn)P作y軸的平行線交BC于點(diǎn)F.
(1)求該二次函數(shù)的解析式;
(2)若設(shè)點(diǎn)P的橫坐標(biāo)為m,用含m的代數(shù)式表示線段PF的長;
(3)求△PBC面積的最大值,并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(33):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,正方形ABCO的邊長為,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)C在y軸的正半軸上,把正方形ABCO繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α后得到正方形A1B1C1O(α<45°),B1C1交y軸于點(diǎn)D,且D為B1C1的中點(diǎn),拋物線y=ax2+bx+c過點(diǎn)A1、B1、C1
(1)求tanα的值;
(2)求點(diǎn)A1的坐標(biāo),并直接寫出點(diǎn)B1、點(diǎn)C1的坐標(biāo);
(3)求拋物線的函數(shù)表達(dá)式及其對稱軸;
(4)在拋物線的對稱軸上是否存在點(diǎn)P,使△PB1C1為直角三角形?若存在,直接寫出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(33):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

閱讀材料:
如圖1,過△ABC的三個(gè)頂點(diǎn)分別作出與水平線垂直的三條直線,外側(cè)兩條直線之間的距離叫△ABC的“水平寬”(a),中間的這條直線在△ABC內(nèi)部線段的長度叫△ABC的“鉛垂高(h)”.我們可得出一種計(jì)算三角形面積的新方法:
S△ABC=ah,即三角形面積等于水平寬與鉛垂高乘積的一半.
解答下列問題:
如圖2,拋物線頂點(diǎn)坐標(biāo)為點(diǎn)C(1,4),交x軸于點(diǎn)A(3,0),交y軸于點(diǎn)B.
(1)求拋物線和直線AB的解析式;
(2)點(diǎn)P是拋物線(在第一象限內(nèi))上的一個(gè)動(dòng)點(diǎn),連接PA,PB,當(dāng)P點(diǎn)運(yùn)動(dòng)到頂點(diǎn)C時(shí),求△CAB的鉛垂高CD及S△CAB;
(3)是否存在一點(diǎn)P,使S△PAB=S△CAB?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(34):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知:直角梯形OABC的四個(gè)頂點(diǎn)是O(0,0),A(,1),B(s,t),C(,0),拋物線y=x2+mx-m的頂點(diǎn)P是直角梯形OABC內(nèi)部或邊上的一個(gè)動(dòng)點(diǎn),m為常數(shù).
(1)求s與t的值,并在直角坐標(biāo)系中畫出直角梯形OABC;
(2)當(dāng)拋物線y=x2+mx-m與直角梯形OABC的邊AB相交時(shí),求m的取值范圍.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(34):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xoy中,等腰梯形OABC的下底邊OA在x軸的正半軸上,BC∥OA,OC=AB.tan∠BA0=,點(diǎn)B的坐標(biāo)為(7,4).
(1)求點(diǎn)A、C的坐標(biāo);
(2)求經(jīng)過點(diǎn)0、B、C的拋物線的解析式;
(3)在第一象限內(nèi)(2)中的拋物線上是否存在一點(diǎn)P,使得經(jīng)過點(diǎn)P且與等腰梯形一腰平行的直線將該梯形分成面積相等的兩部分?若存在,請求出點(diǎn)P的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(34):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,拋物線y=ax2+bx-3與x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),且經(jīng)過點(diǎn)(2,-3a),對稱軸是直線x=1,頂點(diǎn)是M.
(1)求拋物線對應(yīng)的函數(shù)表達(dá)式;
(2)經(jīng)過C,M兩點(diǎn)作直線與x軸交于點(diǎn)N,在拋物線上是否存在這樣的點(diǎn)P,使以點(diǎn)P,A,C,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;
(3)設(shè)直線y=-x+3與y軸的交點(diǎn)是D,在線段BD上任取一點(diǎn)E(不與B,D重合),經(jīng)過A,B,E三點(diǎn)的圓交直線BC于點(diǎn)F,試判斷△AEF的形狀,并說明理由;
(4)當(dāng)E是直線y=-x+3上任意一點(diǎn)時(shí),(3)中的結(jié)論是否成立(請直接寫出結(jié)論).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(34):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知拋物線y=x2+kx-k2(k為常數(shù),且k>0).
(1)證明:此拋物線與x軸總有兩個(gè)交點(diǎn);
(2)設(shè)拋物線與x軸交于M、N兩點(diǎn),若這兩點(diǎn)到原點(diǎn)的距離分別為OM、ON,且,求k的值.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(34):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在直角坐標(biāo)系xoy中,拋物線y=x2+bx+c與x軸交于兩點(diǎn)A、B,與y軸交于點(diǎn)C,其中A在B的左側(cè),B的坐標(biāo)是(3,0).將直線y=kx沿y軸向上平移3個(gè)單位長度后恰好經(jīng)過點(diǎn)B、C.
(1)求k的值;
(2)求直線BC和拋物線的解析式;
(3)求△ABC的面積;
(4)設(shè)拋物線頂點(diǎn)為D,點(diǎn)P在拋物線的對稱軸上,且∠APD=∠ACB,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(34):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,四邊形OABC為矩形,OA=3,OC=4,P為直線AB上一動(dòng)點(diǎn),將直線OP繞點(diǎn)P逆時(shí)針方向旋轉(zhuǎn)90°交直線BC于點(diǎn)Q.
(1)當(dāng)點(diǎn)P在線段AB上運(yùn)動(dòng)(不與A,B重合)時(shí),求證:OA•BQ=AP•BP;
(2)在(1)成立的條件下,設(shè)點(diǎn)P的橫坐標(biāo)為m,線段CQ的長度為l,求出l關(guān)于m的函數(shù)解析式,并判斷l(xiāng)是否存在最小值?若存在,請求出最小值;若不存在,請說明理由;
(3)直線AB上是否存在點(diǎn)P,使△POQ為等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》中考題集(34):2.8 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

已知二次函數(shù)y=x2-x+c.
(1)若點(diǎn)A(-1,n)、B(2,2n-1)在二次函數(shù)y=x2-x+c的圖象上,求此二次函數(shù)的最小值;
(2)若點(diǎn)D(x1,y1)、E(x2,y2)、P(m,m)(m>0)在二次函數(shù)y=x2-x+c的圖象上,且D、E兩點(diǎn)關(guān)于坐標(biāo)原點(diǎn)成中心對稱,連接OP.當(dāng)2≤OP≤2+時(shí),試判斷直線DE與拋物線y=x2-x+c+的交點(diǎn)個(gè)數(shù),并說明理由.

查看答案和解析>>

同步練習(xí)冊答案