相關習題
0 141372 141380 141386 141390 141396 141398 141402 141408 141410 141416 141422 141426 141428 141432 141438 141440 141446 141450 141452 141456 141458 141462 141464 141466 141467 141468 141470 141471 141472 141474 141476 141480 141482 141486 141488 141492 141498 141500 141506 141510 141512 141516 141522 141528 141530 141536 141540 141542 141548 141552 141558 141566 366461
科目:
來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(22):20.5 二次函數(shù)的一些應用(解析版)
題型:解答題
已知拋物線y=-ax2+2ax+b與x軸的一個交點為A(-1,0),與y軸的正半軸交于點C.
(1)直接寫出拋物線的對稱軸,及拋物線與x軸的另一個交點B的坐標;
(2)當點C在以AB為直徑的⊙P上時,求拋物線的解析式;
(3)坐標平面內(nèi)是否存在點M,使得以點M和(2)中拋物線上的三點A、B、C為頂點的四邊形是平行四邊形?若存在,請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:
來源:第20章《二次函數(shù)和反比例函數(shù)》常考題集(22):20.5 二次函數(shù)的一些應用(解析版)
題型:解答題
定義[p,q]為一次函數(shù)y=px+q的特征數(shù).
(1)若特征數(shù)是[2,k-2]的一次函數(shù)為正比例函數(shù),求k的值;
(2)設點A,B分別為拋物線y=(x+m)(x-2)與x,y軸的交點,其中m>0,且△OAB的面積為4,O為原點,求圖象過A,B兩點的一次函數(shù)的特征數(shù).
查看答案和解析>>
科目:
來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(22):20.5 二次函數(shù)的一些應用(解析版)
題型:解答題
如圖,已知直線l
1的解析式為y=3x+6,直線l
1與x軸,y軸分別相交于A,B兩點,直線l
2經(jīng)過B,C兩點,點C的坐標為(8,0),又已知點P在x軸上從點A向點C移動,點Q在直線l
2從點C向點B移動.點P,Q同時出發(fā),且移動的速度都為每秒1個單位長度,設移動時間為t秒(1<t<10).
(1)求直線l
2的解析式;
(2)設△PCQ的面積為S,請求出S關于t的函數(shù)關系式;
(3)試探究:當t為何值時,△PCQ為等腰三角形?
查看答案和解析>>
科目:
來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(22):20.5 二次函數(shù)的一些應用(解析版)
題型:解答題
如圖,拋物線y=
x
2+bx-2與x軸交于A、B兩點,與y軸交于C點,且A(-1,0).
(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M(m,0)是x軸上的一個動點,當MC+MD的值最小時,求m的值.
[注:拋物線y=ax
2+bx+c的頂點坐標為(-
,
).].
查看答案和解析>>
科目:
來源:第20章《二次函數(shù)和反比例函數(shù)》常考題集(22):20.5 二次函數(shù)的一些應用(解析版)
題型:解答題
已知:如圖①,在Rt△ACB中,∠C=90°,AC=4 cm,BC=3 cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設運動的時間為t(s)(0<t<2),解答下列問題:
(1)當t為何值時,PQ∥BC;
(2)設△AQP的面積為y(cm
2),求y與t之間的函數(shù)關系式;
(3)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時刻t,使四邊形PQP′C為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.
查看答案和解析>>
科目:
來源:第20章《二次函數(shù)和反比例函數(shù)》常考題集(22):20.5 二次函數(shù)的一些應用(解析版)
題型:解答題
如圖:拋物線經(jīng)過A(-3,0)、B(0,4)、C(4,0)三點.
(1)求拋物線的解析式.
(2)已知AD=AB(D在線段AC上),有一動點P從點A沿線段AC以每秒1個單位長度的速度移動;同時另一個動點Q以某一速度從點B沿線段BC移動,經(jīng)過t秒的移動,線段PQ被BD垂直平分,求t的值;
(3)在(2)的情況下,拋物線的對稱軸上是否存在一點M,使MQ+MC有最小值?若存在,請求出點M的坐標;若不存在,請說明理由.(注:拋物線y=ax
2+bx+c的對稱軸為x=-
)
查看答案和解析>>
科目:
來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(22):20.5 二次函數(shù)的一些應用(解析版)
題型:解答題
如圖1,在Rt△ABC中,∠C=90°,BC=8厘米,點D在AC上,CD=3厘米.點P、Q分別由A、C兩點同時出發(fā),點P沿AC方向向點C勻速移動,速度為每秒k厘米,行完AC全程用時8秒;點Q沿CB方向向點B勻速移動,速度為每秒1厘米.設運動的時間為x秒(0<x<8),△DCQ的面積為y
1平方厘米,△PCQ的面積為y
2平方厘米.
(1)求y
1與x的函數(shù)關系,并在圖2中畫出y
1的圖象;
(2)如圖2,y
2的圖象是拋物線的一部分,其頂點坐標是(4,12),求點P的速度及AC的長;
(3)在圖2中,點G是x軸正半軸上一點0<OG<6,過G作EF垂直于x軸,分別交y
1、y
2的圖象于點E、F.
①說出線段EF的長在圖1中所表示的實際意義;
②當0<x<6時,求線段EF長的最大值.
查看答案和解析>>
科目:
來源:第20章《二次函數(shù)和反比例函數(shù)》常考題集(22):20.5 二次函數(shù)的一些應用(解析版)
題型:解答題
如圖,平面直角坐標系中有一矩形紙片OABC,O為原點,點A,C分別在x軸,y軸上,點B坐標為(m,
)(其中m>0),在BC邊上選取適當?shù)狞cE和點F,將△OCE沿OE翻折,得到△OGE;再將△ABF沿AF翻折,恰好使點B與點G重合,得到△AGF,且∠OGA=90度.
(1)求m的值;
(2)求過點O,G,A的拋物線的解析式和對稱軸;
(3)在拋物線的對稱軸上是否存在點P,使得△OPG是等腰三角形?若不存在,請說明理由;若存在,直接答出所有滿足條件的點P的坐標(不要求寫出求解過程).
查看答案和解析>>
科目:
來源:第20章《二次函數(shù)和反比例函數(shù)》?碱}集(22):20.5 二次函數(shù)的一些應用(解析版)
題型:解答題
如圖,已知平面直角坐標系xoy中,有一矩形紙片OABC,O為坐標原點,AB∥x軸,B(3,
),現(xiàn)將紙片按如圖折疊,AD,DE為折痕,∠OAD=30度.折疊后,點O落在點O
1,點C落在線段AB點C
1處,并且DO
1與DC
1在同一直線上.
(1)求折痕AD所在直線的解析式;
(2)求經(jīng)過三點O,C
1,C的拋物線的解析式;
(3)若⊙P的半徑為R,圓心P在(2)的拋物線上運動,⊙P與兩坐標軸都相切時,求⊙P半徑R的值.
查看答案和解析>>
科目:
來源:第20章《二次函數(shù)和反比例函數(shù)》常考題集(23):20.5 二次函數(shù)的一些應用(解析版)
題型:解答題
如圖,拋物線y
1=-ax
2-ax+1經(jīng)過點P(-
,
),且與拋物線y
2=ax
2-ax-1相交于A,B兩點.
(1)求a值;
(2)設y
1=-ax
2-ax+1與x軸分別交于M,N兩點(點M在點N的左邊),y
2=ax
2-ax-1與x軸分別交于E,F(xiàn)兩點(點E在點F的左邊),觀察M,N,E,F(xiàn)四點的坐標,寫出一條正確的結(jié)論,并通過計算說明;
(3)設A,B兩點的橫坐標分別記為x
A,x
B,若在x軸上有一動點Q(x,0),且x
A≤x≤x
B,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D兩點,試問當x為何值時,線段CD有最大值,其最大值為多少?
查看答案和解析>>