相關(guān)習(xí)題
 0  145628  145636  145642  145646  145652  145654  145658  145664  145666  145672  145678  145682  145684  145688  145694  145696  145702  145706  145708  145712  145714  145718  145720  145722  145723  145724  145726  145727  145728  145730  145732  145736  145738  145742  145744  145748  145754  145756  145762  145766  145768  145772  145778  145784  145786  145792  145796  145798  145804  145808  145814  145822  366461 

科目: 來源:第2章《二次函數(shù)》?碱}集(22):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,等腰梯形ABCD中,AB=4,CD=9,∠C=60°,動點P從點C出發(fā)沿CD方向向點D運(yùn)動,動點Q同時以相同速度從點D出發(fā)沿DA方向向終點A運(yùn)動,其中一個動點到達(dá)端點時,另一個動點也隨之停止運(yùn)動.
(1)求AD的長;
(2)設(shè)CP=x,問當(dāng)x為何值時△PDQ的面積達(dá)到最大,并求出最大值;
(3)探究:在BC邊上是否存在點M使得四邊形PDQM是菱形?若存在,請找出點M,并求出BM的長;不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(23):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=-x-與x軸交于點A,與y軸交于點C,拋物線y=ax2-x+c(a≠0)經(jīng)過A,B,C三點.
(1)求過A,B,C三點拋物線的解析式并求出頂點F的坐標(biāo);
(2)在拋物線上是否存在點P,使△ABP為直角三角形?若存在,直接寫出P點坐標(biāo);若不存在,請說明理由;
(3)試探究在直線AC上是否存在一點M,使得△MBF的周長最?若存在,求出M點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(23):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,現(xiàn)有兩塊全等的直角三角形紙板Ⅰ,Ⅱ,它們兩直角邊的長分別為1和2.將它們分別放置于平面直角坐標(biāo)系中的△AOB,△COD處,直角邊OB,OD在x軸上.一直尺從上方緊靠兩紙板放置,讓紙板Ⅰ沿直尺邊緣平行移動.當(dāng)紙板Ⅰ移動至△PEF處時,設(shè)PE,PF與OC分別交于點M,N,與x軸分別交于點G,H.
(1)求直線AC所對應(yīng)的函數(shù)關(guān)系式;
(2)當(dāng)點P是線段AC(端點除外)上的動點時,試探究:
①點M到x軸的距離h與線段BH的長是否總相等?請說明理由;
②兩塊紙板重疊部分(圖中的陰影部分)的面積S是否存在最大值?若存在,求出這個最大值及S取最大值時點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(23):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖1,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=5,OC=4.
(1)在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D,E兩點的坐標(biāo);
(2)如圖2,若AE上有一動點P(不與A,E重合)自A點沿AE方向E點勻速運(yùn)動,運(yùn)動的速度為每秒1個單位長度,設(shè)運(yùn)動的時間為t秒(0<t<5),過P點作ED的平行線交AD于點M,過點M作AE平行線交DE于點N.求四邊形PMNE的面積S與時間t之間的函數(shù)關(guān)系式;當(dāng)t取何值時,s有最大值,最大值是多少?
(3)在(2)的條件下,當(dāng)t為何值時,以A,M,E為頂點的三角形為等腰三角形,并求出相應(yīng)的時刻點M的坐標(biāo)?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(23):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知拋物線與x軸交于點A(-2,0),B(4,0),與y軸交于點C(0,8).
(1)求拋物線的解析式及其頂點D的坐標(biāo);
(2)設(shè)直線CD交x軸于點E.在線段OB的垂直平分線上是否存在點P,使得點P到直線CD的距離等于點P到原點O的距離?如果存在,求出點P的坐標(biāo);如果不存在,請說明理由;
(3)過點B作x軸的垂線,交直線CD于點F,將拋物線沿其對稱軸平移,使拋物線與線段EF總有公共點.試探究:拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(23):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖所示,在平面直角坐標(biāo)系中,⊙M經(jīng)過原點O,且與x軸、y軸分別相交于A(-6,0),B(0,-8)兩點.
(1)請求出直線AB的函數(shù)表達(dá)式;
(2)若有一拋物線的對稱軸平行于y軸且經(jīng)過點M,頂點C在⊙M上,開口向下,且經(jīng)過點B,求此拋物線的函數(shù)表達(dá)式;
(3)設(shè)(2)中的拋物線交x軸于D,E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(23):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

在△ABC中,∠A=90°,AB=4,AC=3,M是AB上的動點(不與A,B重合),過M點作MN∥BC交AC于點N.以MN為直徑作⊙O,并在⊙O內(nèi)作內(nèi)接矩形AMPN.令A(yù)M=x.
(1)用含x的代數(shù)式表示△MNP的面積S;
(2)當(dāng)x為何值時,⊙O與直線BC相切;
(3)在動點M的運(yùn)動過程中,記△MNP與梯形BCNM重合的面積為y,試求y關(guān)于x的函數(shù)表達(dá)式,并求x為何值時,y的值最大,最大值是多少?

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(23):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知拋物線經(jīng)過原點O和x軸上另一點A,它的對稱軸x=2與x軸交于點C,直線y=-2x-1經(jīng)過拋物線上一點B(-2,m),且與y軸、直線x=2分別交于點D、E.
(1)求m的值及該拋物線對應(yīng)的函數(shù)關(guān)系式;
(2)求證:①CB=CE;②D是BE的中點;
(3)若P(x,y)是該拋物線上的一個動點,是否存在這樣的點P,使得PB=PE?若存在,試求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》常考題集(23):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,已知拋物線y=x2+bx+c經(jīng)過點(1,-5)和(-2,4)
(1)求這條拋物線的解析式;
(2)設(shè)此拋物線與直線y=x相交于點A,B(點B在點A的右側(cè)),平行于y軸的直線x=m(0<m<+1)與拋物線交于點M,與直線y=x交于點N,交x軸于點P,求線段MN的長(用含m的代數(shù)式表示);
(3)在條件(2)的情況下,連接OM、BM,是否存在m的值,使△BOM的面積S最大?若存在,請求出m的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:第2章《二次函數(shù)》?碱}集(23):2.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

如圖,以矩形OABC的頂點O為原點,OA所在的直線為x軸,OC所在的直線為y軸,建立平面直角坐標(biāo)系.已知OA=3,OC=2,點E是AB的中點,在OA上取一點D,將△BDA沿BD翻折,使點A落在BC邊上的點F處.
(1)直接寫出點E、F的坐標(biāo);
(2)設(shè)頂點為F的拋物線交y軸正半軸于點P,且以點E、F、P為頂點的三角形是等腰三角形,求該拋物線的解析式;
(3)在x軸、y軸上是否分別存在點M、N,使得四邊形MNFE的周長最?如果存在,求出周長的最小值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案