科目: 來源:浙江省臺州市八校2012屆九年級第一次聯(lián)考數(shù)學(xué)試題 題型:044
某課題小組對課本的習(xí)題進行了如下探索,請逐步思考并解答:
(1)(人教版教材習(xí)題24.4的第2題)如下圖,兩個大小一樣的傳送輪連接著一條傳送帶,兩個傳動輪中心的距離是10 m,求這條傳送帶的長________.
(2)改變圖形的數(shù)量;
如下圖、將傳動輪增加到3個,每個傳動輪的直徑是3 m,每兩個傳動輪中心的距離是10 m,求這條傳送帶的長________.
(3)改變動態(tài)關(guān)系,將靜態(tài)問題升華為動態(tài)問題:
如下圖,一個半徑為1 cm的⊙P沿邊長為2πcm的等邊三角形△ABC的外沿作無滑動滾動一周,求圓心P經(jīng)過的路徑長?⊙P自轉(zhuǎn)了多少周?
(4)拓展與應(yīng)用
如下圖,一個半徑為1 cm的⊙P沿半徑為3 cm的⊙O外沿作無滑動滾動一周,則⊙P自轉(zhuǎn)了多少周?
查看答案和解析>>
科目: 來源:2011年廣東省廣州市中考數(shù)學(xué)試卷 題型:044
如圖(1),⊙O中AB是直徑,C是⊙O上一點,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,點D在線段AC上.
(1)證明:B、C、E三點共線;
(2)若M是線段BE的中點,N是線段AD的中點,證明:MN=OM;
(3)將△DCE繞點C逆時針旋轉(zhuǎn)α(0°<α<90°)后,記為△D1CE1(圖2),若M1是線段BE1的中點,N1是線段AD1的中點,M1N1=OM1是否成立?若是,請證明;若不是,說明理由.
查看答案和解析>>
科目: 來源:2011年廣東省廣州市中考數(shù)學(xué)試卷 題型:044
已知關(guān)于x的二次函數(shù)y=ax2+bx+c(a>0)的圖象經(jīng)過點C(0,1),且與x軸交于不同的兩點A、B,點A的坐標是(1,0)
(1)求c的值;
(2)求a的取值范圍;
(3)該二次函數(shù)的圖象與直線y=1交于C、D兩點,設(shè)A、B、C、D四點構(gòu)成的四邊形的對角線相交于點P,記△PCD的面積為S1,△PAB的面積為S2,當(dāng)0<a<1時,求證:S1-S2為常數(shù),并求出該常數(shù).
查看答案和解析>>
科目: 來源:2011年遼寧省本溪市中考數(shù)學(xué)試卷 題型:044
如圖1,在平面直角坐標系中,拋物線過原點O,點A(10,0)和點B(2,2),在線段OA上,點P從點O向點A運動,同時點Q從點A向點O運動,運動過程中保持AQ=2OP,當(dāng)P、Q重合時同時停止運動,過點Q作x軸的垂線,交直線AB于點M,延長QM到點D,使MD=MQ,以QD為對角線作正方形QCDE(正方形QCDE歲點Q運動).
(1)求這條拋物線的函數(shù)表達式;
(2)設(shè)正方形QCDE的面積為S,P點坐標(m,0)求S與m之間的函數(shù)關(guān)系式;
(3)過點P作x軸的垂線,交拋物線于點N,延長PN到點G,使NG=PN,以PG為對角線作正方形PFGH(正方形PFGH隨點P運動),當(dāng)點P運動到點(2,0)時,如圖2,正方形PFGH的邊GP和正方形QCDE的邊EQ落在同一條直線上.
①則此時兩個正方形中在直線AB下方的陰影部分面積的和是多少?
②若點P繼續(xù)向點A運動,還存在兩個正方形分別有邊落在同一條直線上的情況,請直接寫出每種情況下點P的坐標,不必說明理由.
查看答案和解析>>
科目: 來源:2011年遼寧省本溪市中考數(shù)學(xué)試卷 題型:044
在四邊形ABCD中,對角線AC、BD相交于點O,設(shè)銳角∠DOC=α,將△DOC按逆時針方向旋轉(zhuǎn)得到△O(0°<旋轉(zhuǎn)角<90°)連接A、B,A與B相交于點M.
(1)當(dāng)四邊形ABCD是矩形時,如圖1,請猜想A與B的數(shù)量關(guān)系以及∠AMB與α的大小關(guān)系,并證明你的猜想;
(2)當(dāng)四邊形ABCD是平行四邊形時,如圖2,已知AC=BD,請猜想此時A與B的數(shù)量關(guān)系以及∠AMB與α的大小關(guān)系,并證明你的猜想;
(3)當(dāng)四邊形ABCD是等腰梯形時,如圖3,AD∥BC,此時(1)A與B的數(shù)量關(guān)系是否成立?∠AMB與α的大小關(guān)系是否成立?不必證明,直接寫出結(jié)論.
查看答案和解析>>
科目: 來源:2011年湖南省永州市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試題 題型:044
探究問題:
(1)方法感悟:
如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證DE+BF=EF.
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉(zhuǎn)90°得到△ABG,此時AB與AD重合,由旋轉(zhuǎn)可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,∴∠1+∠3=45°.
即∠GAF=∠________.
又AG=AE,AF=AF
∴△GAF≌________.
∴________=EF,故DE+BF=EF.
(2)方法遷移:
如圖②,將Rt△ABC沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=∠DAB.試猜想DE,BF,EF之間有何數(shù)量關(guān)系,并證明你的猜想.
(3)問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足∠EAF=∠DAB,試猜想當(dāng)∠B與∠D滿足什么關(guān)系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).
查看答案和解析>>
科目: 來源:2011年浙江省麗水市中考數(shù)學(xué)試卷 題型:044
如圖,在平面直角坐標系中,點A(10,0),以O(shè)A為直徑在第一象限內(nèi)作半圓C,點B是該半圓周上一動點,連接OB、AB,并延長AB至點D,使DB=AB,過點D作x軸垂線,分別交x軸、直線OB于點E、F,點E為垂足,連接CF.
(1)當(dāng)∠AOB=30°時,求弧AB的長度;
(2)當(dāng)DE=8時,求線段EF的長;
(3)在點B運動過程中,是否存在以點E、C、F為頂點的三角形與△AOB相似,若存在,請求出此時點E的坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源:2011年浙江省麗水市中考數(shù)學(xué)試卷 題型:044
在平面直角坐標系中,如圖1,將n個邊長為1的正方形并排組成矩形OABC,相鄰兩邊OA和OC分別落在x軸和y軸的正半軸上,設(shè)拋物線y=ax2+bx+c(a<0)過矩形頂點B、C.
(1)當(dāng)n=1時,如果a=-1,試求b的值;
(2)當(dāng)n=2時,如圖2,在矩形OABC上方作一邊長為1的正方形EFMN,使EF在線段CB上,如果M,N兩點也在拋物線上,求出此時拋物線的解析式;
(3)將矩形OABC繞點O順時針旋轉(zhuǎn),使得點B落到x軸的正半軸上,如果該拋物線同時經(jīng)過原點O.
①試求當(dāng)n=3時a的值;
②直接寫出a關(guān)于n的關(guān)系式.
查看答案和解析>>
科目: 來源:2011年江蘇省鎮(zhèn)江市中考數(shù)學(xué)試卷 題型:044
在平面直角坐標系XOY中,直線l1過點A(1,0)且與y軸平行,直線l2過點B(0,2)且與x軸平行,直線l1與直線l2相交于點P.點E為直線l2上一點,反比例函數(shù)y=(k>0)的圖象過點E與直線l1相交于點F.
(1)若點E與點P重合,求k的值;
(2)連接OE、OF、EF.若k>2,且△OEF的面積為△PEF的面積的2倍,求E點的坐標;
(3)是否存在點E及y軸上的點M,使得以點M、E、F為頂點的三角形與△PEF全等?若存在,求E點坐標;若不存在,請說明理由.
查看答案和解析>>
科目: 來源:2011年江蘇省鎮(zhèn)江市中考數(shù)學(xué)試卷 題型:044
在平面直角坐標系XOY中,一次函數(shù)y=x+3的圖象是直線l1,l1與x軸、y軸分別相交于A、B兩點.直線l2過點C(a,0)且與直線l1垂直,其中a>0.點P、Q同時從A點出發(fā),其中點P沿射線AB運動,速度為每秒4個單位;點Q沿射線AO運動,速度為每秒5個單位.
(1)寫出A點的坐標和AB的長;
(2)當(dāng)點P、Q運動了多少秒時,以點Q為圓心,PQ為半徑的⊙Q與直線l2、y軸都相切,求此時a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com