科目: 來(lái)源:2008年湖北省孝感市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044
如圖,AB為⊙O的直徑,PQ切⊙O于T,AC⊥PQ于C,交⊙O于D.
(1)求證:AT平分∠BAC;
(2)若AD=2,,求⊙O的半徑.
查看答案和解析>>
科目: 來(lái)源:2008年湖北省天門市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044
一快餐店試銷某種套餐,試銷一段時(shí)間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費(fèi)用為600元(不含套餐成本).若每份售價(jià)不超過(guò)10元,每天可銷售400份;若每份售價(jià)超過(guò)10元,每提高1元,每天的銷售量就減少40份.為了便于結(jié)算,每份套餐的售價(jià)x(元)取整數(shù),用y(元)表示該店日凈收入.(日凈收入=每天的銷售額-套餐成本-每天固定支出)
(1)求y與x的函數(shù)關(guān)系式;
(2)若每份套餐售價(jià)不超過(guò)10元,要使該店日凈收入不少于800元,那么每份售價(jià)最少不低于多少元?
(3)該店既要吸引顧客,使每天銷售量較大,又要有較高的日凈收入.按此要求,每份套餐的售價(jià)應(yīng)定為多少元?此時(shí)日凈收入為多少?
查看答案和解析>>
科目: 來(lái)源:2008年湖北省咸寧市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044
“5·12”四川汶川大地震的災(zāi)情牽動(dòng)全國(guó)人民的心,某市A、B兩個(gè)蔬菜基地得知四川C、D兩個(gè)災(zāi)民安置點(diǎn)分別急需蔬菜240噸和260噸的消息后,決定調(diào)運(yùn)蔬菜支援災(zāi)區(qū).已知A蔬菜基地有蔬菜200噸,B蔬菜基地有蔬菜300噸,現(xiàn)將這些蔬菜全部調(diào)往C、D兩個(gè)災(zāi)民安置點(diǎn).從A地運(yùn)往C、D兩處的費(fèi)用分別為每噸20元和25元,從B地運(yùn)往C、D兩處的費(fèi)用分別為每噸15元和18元.設(shè)從B地運(yùn)往C處的蔬菜為x噸.
(1)請(qǐng)?zhí)顚懴卤,并求兩個(gè)蔬菜基地調(diào)運(yùn)蔬菜的運(yùn)費(fèi)相等時(shí)x的值;
(2)設(shè)A、B兩個(gè)蔬菜基地的總運(yùn)費(fèi)為w元,寫出w與x之間的函數(shù)關(guān)系式,并求總運(yùn)費(fèi)最小的調(diào)運(yùn)方案;
(3)經(jīng)過(guò)搶修,從B地到C處的路況得到進(jìn)一步改善,縮短了運(yùn)輸時(shí)間,運(yùn)費(fèi)每噸減少m元(m>0),其余線路的運(yùn)費(fèi)不變,試討論總運(yùn)費(fèi)最小的調(diào)運(yùn)方案.
查看答案和解析>>
科目: 來(lái)源:2008年湖北省咸寧市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044
如圖,在平面直角坐標(biāo)系中,直線l是第一、三象限的角平分線.
實(shí)驗(yàn)與探究:
(1)由圖觀察易知A(0,2)關(guān)于直線l的對(duì)稱點(diǎn)的坐標(biāo)為(2,0),請(qǐng)?jiān)趫D中分別標(biāo)明B(5,3)、C(-2,5)關(guān)于直線l的對(duì)稱點(diǎn)、的位置,并寫出他們的坐標(biāo):________、________;
歸納與發(fā)現(xiàn):
(2)結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你會(huì)發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)P(a,b)關(guān)于第一、三象限的角平分線l的對(duì)稱點(diǎn)的坐標(biāo)為________(不必證明);
運(yùn)用與拓廣:
(3)已知兩點(diǎn)D(1,-3)、E(-1,-4),試在直線l上確定一點(diǎn)Q,使點(diǎn)Q到D、E兩點(diǎn)的距離之和最小,并求出Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目: 來(lái)源:2008年湖北省十堰市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044
5月12日,我國(guó)四川省汶川縣等地發(fā)生強(qiáng)烈地震,在抗震救災(zāi)中得知,甲、乙兩個(gè)重災(zāi)區(qū)急需一種大型挖掘機(jī),甲地需要25臺(tái),乙地需要23臺(tái);A、B兩省獲知情況后慷慨相助,分別捐贈(zèng)該型號(hào)挖掘機(jī)26臺(tái)和22臺(tái)并將其全部調(diào)往災(zāi)區(qū).如果從A省調(diào)運(yùn)一臺(tái)挖掘機(jī)到甲地要耗資0.4萬(wàn)元,到乙地要耗資0.3萬(wàn)元;從B省調(diào)運(yùn)一臺(tái)挖掘機(jī)到甲地要耗資0.5萬(wàn)元,到乙地要耗資0.2萬(wàn)元.設(shè)從A省調(diào)往甲地x臺(tái)挖掘機(jī),A、B兩省將捐贈(zèng)的挖掘機(jī)全部調(diào)往災(zāi)區(qū)共耗資y萬(wàn)元.
(1)請(qǐng)直接寫出y與x之間的函數(shù)關(guān)系式及自變量x的取值范圍;
(2)若要使總耗資不超過(guò)15萬(wàn)元,有哪幾種調(diào)運(yùn)方案?
(3)怎樣設(shè)計(jì)調(diào)運(yùn)方案能使總耗資最少?最少耗資是多少萬(wàn)元?
查看答案和解析>>
科目: 來(lái)源:2008年湖北省十堰市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044
如圖,AB、BC、CD分別與⊙O切于E、F、G,且AB∥CD.連接OB、OC,延長(zhǎng)CO交⊙O于點(diǎn)M,過(guò)點(diǎn)M作MN∥OB交CD于N.
(1)求證:MN是⊙O的切線;
(2)當(dāng)0B=6 cm,OC=8 cm時(shí),求⊙O的半徑及MN的長(zhǎng).
查看答案和解析>>
科目: 來(lái)源:2008年湖北省仙桃市(潛江 江漢 油田)初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044
如圖,直角梯形OABC中,AB∥OC,O為坐標(biāo)原點(diǎn),點(diǎn)A在y軸正半軸上,點(diǎn)C在x軸正半軸上,點(diǎn)B坐標(biāo)為(2,2),∠BCO=60°,OH⊥BC于點(diǎn)H.動(dòng)點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為每秒1個(gè)單位長(zhǎng)度.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)求OH的長(zhǎng);
(2)若△OPQ的面積為S(平方單位).求S與t之間的函數(shù)關(guān)系式.并求t為何值時(shí),△OPQ的面積最大,最大值是多少?
(3)設(shè)PQ與OB交于點(diǎn)M.①當(dāng)△OPM為等腰三角形時(shí),求(2)中S的值.
②探究線段OM長(zhǎng)度的最大值是多少,直接寫出結(jié)論.
查看答案和解析>>
科目: 來(lái)源:2008年海南省初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044
如圖,P是邊長(zhǎng)為1的正方形ABCD對(duì)角線AC上一動(dòng)點(diǎn)(P與A、C不重合),點(diǎn)E在射線BC上,且PE=PB.
(1)求證:①PE=PD;②PE⊥PD;
(2)設(shè)AP=x,△PBE的面積為y.
①求出y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
②當(dāng)x取何值時(shí),y取得最大值,并求出這個(gè)最大值.
查看答案和解析>>
科目: 來(lái)源:2008年浙江省湖州市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:044
函數(shù)的圖象叫做整點(diǎn)拋物線(例如:y=x2+2x+2)
(1)請(qǐng)你寫出一個(gè)二次項(xiàng)系數(shù)的絕對(duì)值小于1的整點(diǎn)拋物線的解析式________
(2)請(qǐng)?zhí)剿鳎菏欠翊嬖诙雾?xiàng)系數(shù)的絕對(duì)值小于的整點(diǎn)拋物線?若存在,請(qǐng)寫出其中一條拋物線的解析式,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源:2008年浙江省杭州市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷與參考答案 題型:044
在直角坐標(biāo)系xOy中,設(shè)點(diǎn)A(0,t),點(diǎn)Q(t,b)(t,b均為非零常數(shù)).平移二次函數(shù)y=-tx2的圖象,得到的拋物線F滿足兩個(gè)條件:①頂點(diǎn)為Q;②與x軸相交于B,C兩點(diǎn)(|OB|<|OC|).連接AB.
(1)是否存在這樣的拋物線F,使得|OA|2=|OB|·|OC|?請(qǐng)你作出判斷,并說(shuō)明理由;
(2)如果AQ∥BC,且tan∠ABO=,求拋物線F對(duì)應(yīng)的二次函數(shù)的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com