科目: 來源:2008年浙江省湖州市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059
已知:在矩形AOBC中,OB=4,OA=3,分別以O(shè)B、OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標(biāo)系,F(xiàn)是邊BC上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),過F點(diǎn)的反比例函數(shù)y=(k>0)的圖象與AC邊交于點(diǎn)E.
(1)求證:△AOE與△BOF的面積相等.
(2)記S=S△OEF-S△ECF,求當(dāng)k為何值時(shí),S有最大值,最大值為多少?
(3)請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)F,做一日和尚撞一天鐘得將CEF沿EF對(duì)折后,C點(diǎn)恰好落在OB上?若存在,求出點(diǎn)F的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源:2008年浙江省臺(tái)州市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷及答案 題型:059
CD經(jīng)過∠BCA頂點(diǎn)C的一條直線,CA=CB.E,F(xiàn)分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠α.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上,請(qǐng)解決下面兩個(gè)問題:
①如圖1,若∠BCA=90°,∠α=90°,
則BE________CF;EF________|BE-AF|(填“>”,“<”或“=”);
②如圖2,若0°<∠BCA<180°,請(qǐng)?zhí)砑右粋(gè)關(guān)于∠α與∠BCA關(guān)系的條件________,使①中的兩個(gè)結(jié)論仍然成立,并證明兩個(gè)結(jié)論成立.
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請(qǐng)?zhí)岢鯡F,BE,AF三條線段數(shù)量關(guān)系的合理猜想(不要求證明).
查看答案和解析>>
科目: 來源:2008年浙江省麗水市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059
如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A坐標(biāo)為(2,4),直線x=2與x軸相交于點(diǎn)B,連結(jié)OA,拋物線y=x2從點(diǎn)O沿OA方向平移,與直線x=2交于點(diǎn)P,頂點(diǎn)M到A點(diǎn)時(shí)停止移動(dòng).
(1)求線段OA所在直線的函數(shù)解析式;
(2)設(shè)拋物線頂點(diǎn)M的橫坐標(biāo)為m,
①用m的代數(shù)式表示點(diǎn)P的坐標(biāo);
②當(dāng)m為何值時(shí),線段PB最短;
(3)當(dāng)線段PB最短時(shí),相應(yīng)的拋物線上是否存在點(diǎn)Q,使△QMA的面積與△PMA的面積相等,若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源:2008年河南中原油田、南陽油田初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059
如圖,拋物線y=ax2+bx+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,且當(dāng)x=O和x=4時(shí),y的值相等.直線y=4x-16與這條拋物線相交于兩點(diǎn),其中一點(diǎn)的橫坐標(biāo)是3,另一點(diǎn)是這條拋物線的頂點(diǎn)M.
(1)求這條拋物線的解析式;
(2)P為線段OM上一點(diǎn),過點(diǎn)P作PQ⊥x軸于點(diǎn)Q.若點(diǎn)P在線段OM上運(yùn)動(dòng)(點(diǎn)P不與點(diǎn)O重合,但可以與點(diǎn)M重合),設(shè)OQ的長(zhǎng)為t,四邊形PQCO的面積為S,求S與t之間的函數(shù)關(guān)系式及自變量t的取值范圍;
(3)隨著點(diǎn)P的運(yùn)動(dòng),四邊形PQCO的面積S有最大值嗎?如果S有最大值,請(qǐng)求出S的最大值并指出點(diǎn)Q的具體位置和四邊形PQCO的特殊形狀;如果S沒有最大值,請(qǐng)簡(jiǎn)要說明理由;
(4)隨著點(diǎn)P的運(yùn)動(dòng),是否存在t的某個(gè)值,能滿足PO=OC?如果存在,請(qǐng)求出t的值.
查看答案和解析>>
科目: 來源:2008年河北省初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059
如圖,在Rt△ABC中,∠C=90°,AB=50,AC=30,D,E,F(xiàn)分別是AC,AB,BC的中點(diǎn).點(diǎn)P從點(diǎn)D出發(fā)沿折線DE-EF-FC-CD以每秒7個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng);點(diǎn)Q從點(diǎn)B出發(fā)沿BA方向以每秒4個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng),過點(diǎn)Q作射線QK⊥AB,交折線BC-CA于點(diǎn)G.點(diǎn)P,Q同時(shí)出發(fā),當(dāng)點(diǎn)P繞行一周回到點(diǎn)D時(shí)停止運(yùn)動(dòng),點(diǎn)Q也隨之停止.設(shè)點(diǎn)P,Q運(yùn)動(dòng)的時(shí)間是t秒(t>0).
(1)D,F(xiàn)兩點(diǎn)間的距離是________;
(2)射線QK能否把四邊形CDEF分成面積相等的兩部分?若能,求出t的值.若不能,說明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到折線EF-FC上,且點(diǎn)P又恰好落在射線QK上時(shí),求t的值;
(4)連結(jié)PQ,當(dāng)PG∥AB時(shí),請(qǐng)直接寫出t的值.
查看答案和解析>>
科目: 來源:2008年河北省初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059
如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.
(1)在圖1中,請(qǐng)你通過觀察、測(cè)量,猜想并寫出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系;
(2)將△EFP沿直線l向左平移到圖2的位置時(shí),EP交AC于點(diǎn)Q,連結(jié)AP,BQ.猜想并寫出BQ與AP所滿足的數(shù)量關(guān)系和位置關(guān)系,請(qǐng)證明你的猜想;
(3)將△EFP沿直線l向左平移到圖3的位置時(shí),EP的延長(zhǎng)線交AC的延長(zhǎng)線于點(diǎn)Q,連結(jié)AP,BQ.你認(rèn)為(2)中所猜想的BQ與AP的數(shù)量關(guān)系和位置關(guān)系還成立嗎?若成立,給出證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源:2008年江蘇省蘇州市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059
如圖,拋物線y=a(x+1)(x-5)與x軸的交點(diǎn)為M、N.直線y=kx+b與x軸交于P(-2,0).與y軸交于C,若A、B兩點(diǎn)在直線y=kx+b上.且AO=BO=,AO⊥BO.D為線段MN的中點(diǎn).OH為Rt△OPC斜邊上的高.
(1)OH的長(zhǎng)度等于________;k=________,b=________.
(2)是否存在實(shí)數(shù)a,使得拋物線y=a(x+1)(x-5)上有一點(diǎn)F.滿足以D、N、E為頂點(diǎn)的三角形與△AOB相似?若不存在,說明理由;若存在,求所有符合條件的拋物線的解析式.同時(shí)探索所求得的拋物線上是否還有符合條件的E點(diǎn)(簡(jiǎn)要說明理由).并進(jìn)一步探索對(duì)符合條件的每一個(gè)E點(diǎn),直線NE與直線AB的交點(diǎn)G是否總滿足PB·PG<10,寫出探索過程
查看答案和解析>>
科目: 來源:2008年新疆烏魯木齊市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059
如圖,在平面直角坐標(biāo)系中,以點(diǎn)C(1,1)為圓心,2為半徑作圓,交x軸于A,B兩點(diǎn),開口向下的拋物線經(jīng)過點(diǎn)A,B,且其頂點(diǎn)P在⊙C上.
(1)求∠ACB的大。
(2)寫出A,B兩點(diǎn)的坐標(biāo);
(3)試確定此拋物線的解析式;
(4)在該拋物線上是否存在一點(diǎn)D,使線段OP與CD互相平分?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源:2008年廣東省茂名市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059
如圖,在平面直角坐標(biāo)系中,拋物線y=-+bx+c經(jīng)過A(0,-4)、B(x1,0)、C(x2,0)三點(diǎn),且x2-x1=5.
(1)求b、c的值;
(2)在拋物線上求一點(diǎn)D,使得四邊形BDCE是以BC為對(duì)角線的菱形;
(3)在拋物線上是否存在一點(diǎn)P,使得四邊形BPOH是以OB為對(duì)角線的菱形?若存在,求出點(diǎn)P的坐標(biāo),并判斷這個(gè)菱形是否為正方形?若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源:2008年廣東省茂名市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059
如圖,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AD=2,BC=4,延長(zhǎng)BC到E,使CE=AD.
(1)寫出圖中所有與△DCE全等的三角形,并選擇其中一對(duì)說明全等的理由;
(2)探究當(dāng)?shù)妊菪?I>ABCD的高DF是多少時(shí),對(duì)角線AC與BD互相垂直?請(qǐng)回答并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com