相關習題
 0  223699  223707  223713  223717  223723  223725  223729  223735  223737  223743  223749  223753  223755  223759  223765  223767  223773  223777  223779  223783  223785  223789  223791  223793  223794  223795  223797  223798  223799  223801  223803  223807  223809  223813  223815  223819  223825  223827  223833  223837  223839  223843  223849  223855  223857  223863  223867  223869  223875  223879  223885  223893  366461 

科目: 來源:不詳 題型:解答題

如圖,直角梯形OABC中,AB∥OC,O為坐標原點,點A在y軸正半軸上,點C在x軸正半軸上,點B坐標為(2,),∠BCO=60°,OH⊥BC于點H.動點P從點H出發(fā),沿線段HO向點O運動,動點Q從點O出發(fā),沿線段OA向點A運動,兩點同時出發(fā),速度都為每秒1個單位長度.設點P運動的時間為t秒.

(1)求OH的長;
(2)若△OPQ的面積為S(平方單位).求S與t之間的函數(shù)關系式.并求t為何值時,△OPQ的面積最大,最大值是多少;
(3)設PQ與OB交于點M.①當△OPM為等腰三角形時,求(2)中S的值. ②探究線段OM長度的最大值是多少,直接寫出結論.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

對于拋物線,當x      時,函數(shù)值y隨x的增大而減小.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

如圖所示的拋物線是二次函數(shù)的圖像,那么下列結論錯誤的是 (  )
A.當時,;B.當時, ;
C.當時,的增大而增大;D.上述拋物線可由拋物線平移得到

查看答案和解析>>

科目: 來源:不詳 題型:填空題

如圖,是二次函數(shù)圖象的一部分,其對稱軸為,若其與x軸一交點為A(3,0),則有圖象可知不等式的解集是____________.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的圖象與軸交于AB兩點,與軸交于點P,頂點為C(1,-2).

(1)求此函數(shù)的關系式;
(2)作點C關于軸的對稱點D,順次連接A、CB、D.若在拋物線上存在點E,使直線PE將四邊形ABCD分成面積相等的兩個四邊形,求點E的坐標;
(3)在(2)的條件下,拋物線上是否存在一點F,使得△PEF是以P為直角頂點的直角三角形?若存在,求出點F的坐標及△PEF的面積;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

已知二次函數(shù)的圖象如圖所示,
下列結論:①   ②   ③    ④    ⑤
其中正確的有(     )個
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源:不詳 題型:解答題

“天天樂”商場銷售一種進價為20元/臺的臺燈,經調查發(fā)現(xiàn),該臺燈每天的銷售量w(臺)與銷售單價x(元)滿足,設銷售這種臺燈每天的利潤為y(元).
(1)求y與x之間的函數(shù)關系式;
(2)當銷售單價定為多少元時,每天的利潤最大?最大利潤是多少?
(3)在保證銷售量盡可能大的前提下,該商場每天還想獲得150元的利潤,應該將銷售單價定為多少元?

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,直線交x軸于點A(-1,0),交y軸于B點,;過A、B兩點的拋物線交x軸于另一點C(3,0).

(1)求直線AB的表達式;
(2)求拋物線的表達式;
(3)在拋物線的對稱軸上是否存在點Q,使△ABQ是等腰三角形?若存在,求出符合條件的Q點坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

二次函數(shù) y=ax2-ax+1 (a≠0)的圖象與x軸有兩個交點,其中一個交點為(,0),那么另一個交點坐標為       

查看答案和解析>>

科目: 來源:不詳 題型:解答題

,已知A(-4,0),B(-1,4), 將線段AB繞點O,順時針旋轉90°,得到線段A′B′

(1)求直線BB′的解析式;
(2)拋物線y1=ax2-19cx+16c經過A′B′兩點,求拋物線的解析式
并畫出它的圖象;
(3)在(2)的條件下,若直線A′B′的函數(shù)解析式為y2=mx+n,觀察圖
象,當y1y2時,寫出x的取值范圍.

查看答案和解析>>

同步練習冊答案