一透明的敞口正方體容器ABCD -A′B′C′D′ 裝有一些液體,棱AB始終在水平桌面上,容器底部的傾斜角為α (∠CBE = α,如圖1所示).
探究 如圖1,液面剛好過棱CD,并與棱BB′ 交于點Q,此時液體的形狀為直三棱柱,其三視圖及尺寸如
圖2所示.解決問題:
(1)CQ與BE的位置關系是
,BQ的長是
dm;
(2)求液體的體積;(參考算法:直棱柱體積V液 = 底面積S
BCQ×高AB)
(3)求α的度數.(注:sin49°=cos41°=
,tan37°=
)
拓展 在圖1的基礎上,以棱AB為軸將容器向左或向右旋轉,但不能使液體溢出,圖3或圖4是其正面示意圖.若液面與棱C′C或CB交于點P,設PC = x,BQ = y.分別就圖3和圖4求y與x的函數關系式,并寫出相應的α的范圍.
延伸 在圖4的基礎上,于容器底部正中間位置,嵌入一平行于側面的長方形隔板(厚度忽略不計),得到圖5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.繼續(xù)向右緩慢旋轉,當α = 60°時,通過計算,判斷溢出容器的液體能否達到4 dm
3.