科目: 來源: 題型:
【題目】如果兩個三角形的兩條邊對應(yīng)相等,夾角互補(bǔ),那么這兩個三角形叫做互補(bǔ)三角形,如圖2,分別以△ABC的邊AB、AC為邊向外作正方形ABDE和ACGF,則圖中的兩個三角形就是互補(bǔ)三角形.
(1)圖1中的△ABC的BC邊上有一點D,線段AD將△ABC分成兩個互補(bǔ)三角形,則點D在BC邊的處.
(2)證明:圖2中的△ABC分割成兩個互補(bǔ)三角形面積相等;
(3)如圖3,在圖2的基礎(chǔ)上再以BC為邊向外作正方形BCHI,已知三個正方形面積分別是17、13、10.則圖3中六邊形DEFGHI的面積為 . (提示:可先利用圖4求出△ABC的面積)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作⊙O的切線DF,交AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖是一次函數(shù)y=kx+b的圖象,以下說法中正確的是( )
A. 直線與y軸的交點為(3,0) B. y隨x的增大而增大
C. 直線與兩坐標(biāo)軸圍成的三角形面積是6 D. 一元一次方程kx+b=0的解為x=2
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,小華用若干個正方形和長方形準(zhǔn)備拼成一個長方體的展開圖.拼完后,小華看來看去總覺得所拼圖形似乎存在問題.
(1)請你幫小華分析一下拼圖是否存在問題:若有多余塊,則把圖中多余部分涂黑;若還缺少,則直接在原圖中補(bǔ)全;
(2)若圖中的正方形邊長為3 cm,長方形的長為5 cm,寬為3 cm,請直接寫出修正后所折疊而成的長方體的體積是 cm3.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,0為原點,A(4,0),E(0,3),四邊形OABC,四邊形OCDE都為平行四邊形,OC=5,函數(shù)y= (x>0)的圖象經(jīng)過AB的中點F和DE的中點G,則k的值為 .
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2h,并且甲車途中休息了0.5h,如圖是甲乙兩車行駛的距離y(km)與時間x(h)的函數(shù)圖象.則下列結(jié)論:
①a=40,m=1;
②乙的速度是80km/h;
③甲比乙遲 h到達(dá)B地;
④乙車行駛 小時或 小時,兩車恰好相距50km.
正確的個數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目: 來源: 題型:
【題目】【新知理解】
如圖①,點C在線段AB上,圖中共有三條線段AB、AC和BC,若其中有一條線段的長度是另外一條線段長度的2倍,則稱點C是線段AB的“巧點”.
線段的中點__________這條線段的“巧點”;(填“是”或“不是”).
若AB = 12cm,點C是線段AB的巧點,則AC=___________cm;
【解決問題】
(3) 如圖②,已知AB=12cm.動點P從點A出發(fā),以2cm/s的速度沿AB向點B勻速移動:點Q從點B出發(fā),以1cm/s的速度沿BA向點A勻速移動,點P、Q同時出發(fā),當(dāng)其中一點到達(dá)終點時,運動停止,設(shè)移動的時間為t(s).當(dāng)t為何值時,A、P、Q三點中其中一點恰好是另外兩點為端點的線段的巧點?說明理由
查看答案和解析>>
科目: 來源: 題型:
【題目】以四邊形ABCD的邊AB、AD為邊分別向外側(cè)作等邊三角形ABF和ADE,連接EB、FD,交點為G.
(1)當(dāng)四邊形ABCD為正方形時(如圖1),EB和FD的數(shù)量關(guān)系是 ;
(2)當(dāng)四邊形ABCD為矩形時(如圖2),EB和FD具有怎樣的數(shù)量關(guān)系?請加以證明;
(3)四邊形ABCD由正方形到矩形到一般平行四邊形的變化過程中,∠EGD是否發(fā)生變化?如果改變,請說明理由;如果不變,請在圖3中求出∠EGD的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】某林場計劃購買甲、乙兩種樹苗共800株,甲種樹苗每株24元,乙種樹苗每株30元.甲、乙兩種樹苗的成活率分別為85%,90%.
(1)若購買這兩種樹苗共用去21000元,則甲、乙兩種樹苗各購買多少株?
(2)若要使這批樹苗的總成活率不低于88%,則甲種樹苗的數(shù)量應(yīng)滿足怎樣的條件?
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀理解:如圖1,在平面內(nèi)選一定點O,引一條有方向的射線Ox,再選定一個單位長度,那么平面上任一點M的位置可由∠MOx的度數(shù)θ與OM的長度m確定,有序數(shù)對(θ,m)稱為M點的“極坐標(biāo)”,這樣建立的坐標(biāo)系稱為“極坐標(biāo)系”. 應(yīng)用:在圖2的極坐標(biāo)系下,如果正六邊形的邊長為2,有一邊OA在射線Ox上,則正六邊形的頂點C的極坐標(biāo)應(yīng)記為( )
A.(60°,4)
B.(45°,4)
C.(60°,2 )
D.(50°,2 )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com