科目: 來源: 題型:
【題目】甲、乙、丙3人聚會,每人帶了一件禮物,將這3件禮物分別放在3個完全相同的盒子里,每人隨機抽取一個禮盒(裝有禮物的盒子)
(1)下列事件是必然事件的是 A 乙沒有抽到自己帶來的禮物B 乙恰好抽到自己帶來的禮物C 乙抽到一件禮物D 只有乙抽到自己帶來的禮物
(2)甲、乙、丙3人抽到的都不是自己帶來的禮物(記為事件A),請列出事件A的所有可能的結(jié)果,并求事件A的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)開展“校園文化節(jié)“活動,對學(xué)生參加書法比賽的作品按A、B、C、D四個等級進行了評定.現(xiàn)隨機抽取部分參賽學(xué)生書法作品的評定結(jié)果進行統(tǒng)計分析,并將分析結(jié)果繪制成如圖扇形統(tǒng)計圖(圖①)和條形統(tǒng)計圖(圖②),根據(jù)所給信息完成下列問題:
(1)本次抽取的樣本的容量為;
(2)在圖①中,C級所對應(yīng)的扇形圓心角度數(shù)是;
(3)請在圖②中將條形統(tǒng)計圖補充完整;
(4)已知該校本次活動學(xué)生參賽的書法作品共750件,請你估算參賽作品中A級和B級作品共多少件?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知動點A在反比例函數(shù)y= (x>0)圖象上,AB⊥x軸于點B,AC⊥y軸于點C,延長CA到點D,使AD= AB,延長BA到點E,使AE= AC,直線DE分別交x、y軸于點P、Q,當(dāng) = 時,則△ACE與△ADB面積之和等于 .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC,點M在AC邊上,且AM=1,MC=4,動點P在AB邊上,連接PC,PM,則PC+PM的最小值是( )
A.
B.6
C.
D.7
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙兩人進行慢跑練習(xí),慢跑路程y(米)與所用時間t(分鐘)之間的關(guān)系如圖所示,下列說法錯誤的是( )甲、乙兩人進行慢跑練習(xí),慢跑路程y(米)與所用時間t(分鐘)之間的關(guān)系如圖所示,下列說法錯誤的是( )
A.前2分鐘,乙的平均速度比甲快
B.甲、乙兩人8分鐘各跑了800米
C.5分鐘時兩人都跑了500米
D.甲跑完800米的平均速度為100米/分
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1所示,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0)、B(5,0)兩點,與y軸交于C點,D為拋物線的頂點,E為拋物線上一點,且C、E關(guān)于拋物線的對稱軸對稱,分別作直線AE、DE.
(1)求此二次函數(shù)的關(guān)系式;
(2)在圖1中,直線DE上有一點Q,使得△QCO≌△QBO,求點Q的坐標;
(3)如圖2,直線DE與x軸交于點F,點M為線段AF上一個動點,有A向F運動,速度為每秒2個單位長度,運動到F處停止,點N由F處出發(fā),沿射線FE方向運動,速度為每秒 個單位長度,M、N兩點同時出發(fā),運動時間為t秒,當(dāng)M停止時點N同時停止運動坐標平面內(nèi)有一個動點P,t為何值時,以P、M、N、F為頂點的四邊形是特殊的平行四邊形.請直接寫出t值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,在等腰△ABC中,AB=AC,F(xiàn)為AB邊上的中點,延長CB至D,使得BD=BC,連接AD交CF的延長線于E.
(1)如圖1,若∠BAC=60°,求證:△CED為等腰三角形
(2)如圖2,若∠BAC≠60°,(1)中結(jié)論還成立嗎?若成立,請證明,若不成立,請說明理由.
(3)如圖3,當(dāng) =是(直接填空),△CED為等腰直角三角形.
查看答案和解析>>
科目: 來源: 題型:
【題目】經(jīng)市場調(diào)查,某種商品在第x天的售價與銷量的相關(guān)信息如下表;已知該商品的進價為每件30元,設(shè)銷售該商品每天的利潤為y元.
(1)求出y與x的函數(shù)關(guān)系式
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大?最大利潤是多少?
(3)該商品銷售過程中,共有多少天日銷售利潤不低于4800元?直接寫出答案.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABE是⊙O的內(nèi)接三角形,AB為直徑,過點B的切線與AE的延長線交于點C,D是BC的中點,連接DE,連接CO,線段CO的延長線交⊙O于F,F(xiàn)G⊥AB于G.
(1)求證:DE是⊙O的切線;
(2)若AE=4,BE=2,求AG的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某中學(xué)在教學(xué)樓前新建了一座雕塑AB,為了測量雕塑的高度,小明在二樓找到一點C,利用三角尺測得雕塑頂端點A的仰角∠QCA為45°,底部點B的俯角∠QCB為30°,小華在五樓找到一點D,利用三角尺測得點A的俯角∠PDA為60°,若AD為8m,則雕塑AB的高度為多少?(結(jié)果精確到0.1m,參考數(shù)據(jù): ≈1.73).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com