科目: 來源: 題型:
【題目】如圖,已知AM∥BN,∠A=60°.點P是射線AM上一動點(與點A不重合),BC、BD分別平分∠ABP和∠PBN,分別交射線AM于點C,D.
(1)求∠CBD的度數(shù);
(2)當(dāng)點P運動時,∠APB與∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關(guān)系,并說明理由;若變化,請寫出變化規(guī)律.
(3)當(dāng)點P運動到使∠ACB=∠ABD時,直接寫出∠ABC的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】在前面的學(xué)習(xí)中,我們通過對同一面積的不同表達和比較,根據(jù)圖①和圖②發(fā)現(xiàn)并驗證了平方差公式和完全平方公式.這種利用面積關(guān)系解決問題的方法,使抽象的數(shù)量關(guān)系因幾何直觀而形象化.
請你利用上述方法解決下列問題:
(1)請寫出圖1和圖2所表示的代數(shù)恒等式
_______ _______
(2)現(xiàn)有a×a,b×b的正方形紙片和a×b的矩形紙片各若干塊,試選用這些紙片(每種紙片至少用一次,每兩個紙片之間既不重疊,也無空隙,拼出的圖形中必須保留拼圖的痕跡),使拼出的矩形面積為為2a2+5ab+2b2,并標出此矩形的長和寬.
(拓展應(yīng)用)
提出問題:47×43,56×54,79×71,…是一些十位數(shù)字相同,且個位數(shù)字之和是10的兩個兩位數(shù)相乘的算式,是否可以找到一種速算方法?
幾何建模:用矩形的面積表示兩個正數(shù)的乘積,以47×43為例:
(1)畫長為47,寬為43的矩形,如圖③,將這個47×43的矩形從右邊切下長40,寬3的一條,拼接到原矩形上面.
(2)原矩形面積可以有兩種不同的表達方式:47×43的矩形面積或(40+7+3)×40的矩形與右上角3×7的矩形面積之和,47×43=(40+10)×40+3×7=5×4×100+3×7=2021,
用文字表述47×43的速算方法是:十位數(shù)字4加1的和與4相乘,再乘以100,加上個位數(shù)字3與7的積,構(gòu)成運算結(jié)果.
歸納提煉:
兩個十位數(shù)字相同,并且個位數(shù)字之和是10的兩位數(shù)相乘的速算方法是(用文字表述)_________.
證明上述速算方法的正確性;
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC,BD交于點0,過點0的直線分別交邊AD,BC于點E,F(xiàn),EF=6.則AE2+BF2的值為( )
A. 9 B. 16 C. 18 D. 36
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,半徑為1的的圓心A在拋物線y=(x-3)2-1上,AB//x軸交 于點B(點B在點A的右側(cè)),當(dāng)點A在拋物線上運動時,點B隨之運動得到的圖象的函數(shù)表達式為( )
A. y=(x-4)2-1 B. y=(x-3)2 C. y=(x-2)2-1 D. y=(x-3)2-2
查看答案和解析>>
科目: 來源: 題型:
【題目】已知 ABC(如圖1),按圖2所示的尺規(guī)作圖痕跡不需借助三角形全等就能推出四邊形ABCD是平行四邊形的依據(jù)是( )
A. 兩組對邊分別平行的四邊形是平行四邊形 B. 兩組對邊分別相等的四邊形是平行四邊形
C. 一組對邊平行且相等的四邊形是平行四邊形 D. 對角線互相平分的四邊形是平行四邊形
查看答案和解析>>
科目: 來源: 題型:
【題目】周末,小明坐公交車到濱海公園游玩,他從家出發(fā)0.8小時候達到中心書城,逗留一段時間后繼續(xù)坐公交車到濱海公園,小明離家一段時間后,爸爸駕車沿相同的路線前往海濱公園,并比小明早到達,已知爸爸的平均速度是小明從家到中心書城平均速度的兩倍.如圖是他們離家路程s(km)與小明離家時間t(h)的關(guān)系圖,請根據(jù)圖回答下列問題:
(1)小明家到濱海公園的路程為 km,小明在中心書城逗留的時間為 h;
(2)小明從中心書城到濱海公園的平均速度是 km/h,
(3)小明爸爸比小明早到達多長時間?
(4)爸爸駕車經(jīng)過多長時間追上小明?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,∠l=∠2,DE⊥BC,AB⊥BC,那么∠A=∠3嗎?說明理由.
解:∠A=∠3,理由如下:
∵DE⊥BC,AB⊥BC(已知)
∴∠DEB=∠ABC=90° ( )
∴∠DEB+( )=180°
∴DE∥AB ( )
∴∠1=∠A( )
∠2=∠3( )
∵∠l=∠2(已知)
∴∠A=∠3( )
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,將二次函數(shù)y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個單位,再向上平移4個單位,得到二次函數(shù)y=ax2+bx+c的圖象.函數(shù)y=x2+2x+1的圖象的頂點為點A.函數(shù)y=ax2+bx+c的圖象的頂點為點B,和x軸的交點為點C,D(點D位于點C的左側(cè)).
(1)求函數(shù)y=ax2+bx+c的解析式;
(2)從點A,C,D三個點中任取兩個點和點B構(gòu)造三角形,求構(gòu)造的三角形是等腰三角形的概率;
(3)若點M是線段BC上的動點,點N是△ABC三邊上的動點,是否存在以AM為斜邊的Rt△AMN,使△AMN的面積為△ABC面積的?若存在,求tan∠MAN的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知△ABC中,∠BAC=100°.
(1)若∠ABC和∠ACB的角平分線交于點O,如圖1所示,試求∠BOC的大。
(2)若∠ABC和∠ACB的三等分線(即將一個角平均分成三等分的射線)相交于O,O1,如圖2所示,試求∠BOC的大。
(3)如此類推,若∠ABC和∠ACB的n等分線自下而上依次相交于O,O1,O2…,如圖3所示,試探求∠BOC的大小與n的關(guān)系,并判斷當(dāng)∠BOC=170°時,是幾等分線的交線所成的角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com