科目: 來源: 題型:
【題目】在△ABC中,∠A=60°,BD,CE是△ABC的兩條角平分線,且BD,CE交于點(diǎn)F,如圖所示,用等式表示BE,BC,CD這三條線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;
曉東通過觀察,實(shí)驗(yàn),提出猜想:BE+CD=BC,他發(fā)現(xiàn)先在BC上截取BM,使BM=BE,連接FM,再利用三角形全等的判定和性質(zhì)證明CM=CD即可.
(1)下面是小東證明該猜想的部分思路,請(qǐng)補(bǔ)充完整;
①在BC上截取BM,使BM=BE,連接FM,則可以證明△BEF與______全等,判定它們?nèi)鹊囊罁?jù)是______;
②由∠A=60°,BD,CE是△ABC的兩條角平分線,可以得出∠EFB=______°;
(2)請(qǐng)直接利用①,②已得到的結(jié)論,完成證明猜想BE+CD=BC的過程.
查看答案和解析>>
科目: 來源: 題型:
【題目】在解決數(shù)學(xué)問題時(shí),我們一般先仔細(xì)讀題干,找出有用信息作為已知條件,然后用這些信息解決問題,但是有的題目信息比較明顯,我們把這樣的信息稱為顯性條件,而有的信息不太明顯需要結(jié)合圖形,特殊式子成立的條件,實(shí)際問題等發(fā)現(xiàn)隱含信息作為條件,這樣的條件稱為隱含條件,所以我們?cè)谧鲱}時(shí)更注意發(fā)現(xiàn)題目中的隱含條件
(閱讀理解)
讀下面的解題過程,體會(huì)加何發(fā)現(xiàn)隱含條件,并回答.
化簡(jiǎn):.解:隱含條件1-3x≥0,解得:x,∴原式=(1-3x)-(1-x)=1-3x-1+x=-2x
(啟發(fā)應(yīng)用)
已知△ABC三條邊的長(zhǎng)度分別是,記△ABC的周長(zhǎng)為C△ABC
(1)當(dāng)x=2時(shí),△ABC的最長(zhǎng)邊的長(zhǎng)度是______(請(qǐng)直接寫出答案).
(2)請(qǐng)求出C△ABC(用含x的代數(shù)式表示,結(jié)果要求化簡(jiǎn)).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,經(jīng)過原點(diǎn)O的拋物線y=ax2+bx(a、b為常數(shù),a≠0)與x軸相交于另一點(diǎn)A(3,0).直線l:y=x在第一象限內(nèi)和此拋物線相交于點(diǎn)B(5,t),與拋物線的對(duì)稱軸相交于點(diǎn)C.
(1)求拋物線的解析式;
(2)在x軸上找一點(diǎn)P,使以點(diǎn)P、O、C為頂點(diǎn)的三角形與以點(diǎn)A、O、B為頂點(diǎn)的三角形相似,求滿足條件的點(diǎn)P的坐標(biāo);
(3)直線l沿著x軸向右平移得到直線l′,l′與線段OA相交于點(diǎn)M,與x軸下方的拋物線相交于點(diǎn)N,過點(diǎn)N作NE⊥x軸于點(diǎn)E.把△MEN沿直線l′折疊,當(dāng)點(diǎn)E恰好落在拋物線上時(shí)(圖2),求直線l′的解析式;
(4)在(3)問的條件下(圖3),直線l′與y軸相交于點(diǎn)K,把△MOK繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°得到△M′OK′,點(diǎn)F為直線l′上的動(dòng)點(diǎn).當(dāng)△M'FK′為等腰三角形時(shí),求滿足條件的點(diǎn)F的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺(tái)的利潤(rùn)為400元,B型電腦每臺(tái)的利潤(rùn)為500元.該商店計(jì)劃再一次性購(gòu)進(jìn)兩種型號(hào)的電腦共100臺(tái),其中B型電腦的進(jìn)貨量不超過A型電腦的2倍,設(shè)購(gòu)進(jìn)A型電腦x臺(tái),這100臺(tái)電腦的銷售總利潤(rùn)為y元.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)該商店購(gòu)進(jìn)A型、B型電腦各多少臺(tái),才能使銷售總利潤(rùn)最大,最大利潤(rùn)是多少?
(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)A型電腦出廠價(jià)下調(diào)a(0<a<200)元,且限定商店最多購(gòu)進(jìn)A型電腦60臺(tái),若商店保持同種電腦的售價(jià)不變,請(qǐng)你根據(jù)以上信息,設(shè)計(jì)出使這100臺(tái)電腦銷售總利潤(rùn)最大的進(jìn)貨方案.
查看答案和解析>>
科目: 來源: 題型:
【題目】賀歲片《流浪地球》被稱為開啟了中國(guó)科幻片的大門,2019也被稱為中國(guó)科幻片的元年.某電影院為了全面了解觀眾對(duì)《流浪地球》的滿意度情況,進(jìn)行隨機(jī)抽樣調(diào)查,分為四個(gè)類別:A.非常滿意;B.滿意;C.基本滿意;D.不滿意.依據(jù)調(diào)查數(shù)據(jù)繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).根據(jù)以上信息,解答下列問題:
(1)本次接受調(diào)查的觀眾共有 人;
(2)扇形統(tǒng)計(jì)圖中,扇形C的圓心角度數(shù)是 .
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)春節(jié)期間,該電影院來觀看《流浪地球》的觀眾約3000人,請(qǐng)估計(jì)觀眾中對(duì)該電影滿意(A、B、C類視為滿意)的人數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象經(jīng)過點(diǎn)A(1,3)、B(3,m).
(1)求反比例函數(shù)的解析式及B點(diǎn)的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,點(diǎn)O在直線AB上,OC⊥OD,∠EDO與∠1互余,OF平分∠COD交DE于點(diǎn)F,若∠OFD=70°,求∠1的度數(shù).
(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡).
(2)解∵∠EDO與∠1互余
∴∠EDO+∠1=90°
∵OC⊥OD
∴∠COD=90°
∴∠EDO+∠1+∠COD=180°
∴______+______=180°
∴ED∥AB.(______)
∴∠AOF=∠OFD=70°(______)
∵OF平分∠COD,(已知)
∴∠COF=∠COD=45°(______)
∴∠1=∠AOF-∠COF=______°.
查看答案和解析>>
科目: 來源: 題型:
【題目】某班對(duì)道德與法治,歷史,地理三門程的選考情況進(jìn)行調(diào)研,數(shù)據(jù)如下:
科目 | 道德與法治 | 歷史 | 地理 |
選考人數(shù)(人) | 19 | 13 | 18 |
其中道德與法治,歷史兩門課程都選了的有3人,歷史,地理兩門課程都選了的有4人,該班至多有多少學(xué)生( )
A.41B.42C.43D.44
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某市郊外景區(qū)內(nèi)一條筆直的公路l經(jīng)過A、B兩個(gè)景點(diǎn),景區(qū)管委會(huì)又開發(fā)了風(fēng)景優(yōu)美的景點(diǎn)C.經(jīng)測(cè)量,C位于A的北偏東60°的方向上,C位于B的北偏東30°的方向上,且AB=10km.
(1)求景點(diǎn)B與C的距離;
(2)為了方便游客到景點(diǎn)C游玩,景區(qū)管委會(huì)準(zhǔn)備由景點(diǎn)C向公路l修一條距離最短的公路,不考慮其他因素,求出這條最短公路的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目: 來源: 題型:
【題目】中華文化源遠(yuǎn)流長(zhǎng),在文學(xué)方面,《西游記》《三國(guó)演義》《水滸傳》《紅樓夢(mèng)》是我國(guó)古代長(zhǎng)篇小說中的典型代表,被稱為“四大古典名著”.某中學(xué)為了了解學(xué)生對(duì)四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學(xué)生中抽取n名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制成如圖所示的兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解決下列問題:
(1)求n的值;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有2000名學(xué)生,請(qǐng)估計(jì)該校四大古典名著均已讀完的人數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com