科目: 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點P是BC中點,兩邊PE、PF分別交AB、AC于點E、F,當(dāng)∠EPF在△ABC內(nèi)繞頂點P旋轉(zhuǎn)時(點E不與A、B重合),給出以下四個結(jié)論:①AE=CF;②△EPF是等腰直角三角形;③2S四邊形AEPF=S△ABC;④BE+CF=EF.上述結(jié)論中始終正確的有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,D是AC邊上一動點,CE⊥BD于E.
(1)如圖(1),若BD平分∠ABC時,①求∠ECD的度數(shù);②延長CE交BA的延長線于點F,補全圖形,探究BD與EC的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖(2),過點A作AF⊥BE于點F,猜想線段BE,CE,AF之間的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目: 來源: 題型:
【題目】把下面的證明過程補充完整.
已知:如圖,是的角平分線,點在上,點在延長線上,交于點,且.
求證:.
證明:在中,
( ).
又(已知),
.
是的角平分線,
( ).
(等量代換).
.
( ).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在數(shù)軸上,點分別表示數(shù)1、,則數(shù)軸上表示數(shù)的點應(yīng)落在______.(填“點的左邊”、“線段上”或“點的右邊”)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D、E、F分別在BC、AB、AC邊上,且BE=CF, BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時,求∠DEF的度數(shù);
(3)△DEF可能是等腰直角三角形嗎?為什么?
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下面的文字,解答問題:大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),因此的小數(shù)部分我們不可能全部寫出來,而<2于是可用來表示的小數(shù)部分.請解答下列問題:
(1)的整數(shù)部分是_______,小數(shù)部分是_________;
(2)如果的小數(shù)部分為的整數(shù)部分為求的值;
(3)已知:其中是整數(shù),且求的平方根。
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,且滿足:,長方形在坐標(biāo)系中(如圖1),點為坐標(biāo)系的原點.
(1)求點的坐標(biāo).
(2)如圖2,若點從點出發(fā),以2個單位/秒的速度向右運動(不超過點),點從原點出發(fā),以1個單位/秒的速度向下運動(不超過點),設(shè)兩點同時出發(fā),在它們運動的過程中,四邊形的面積是否發(fā)生變化?若不變,求其值;若變化,求變化的范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在中,為銳角,點為射線上一點,聯(lián)結(jié),以為一邊且在的右側(cè)作正方形.
(1)如果,,
①當(dāng)點在線段上時(與點不重合),如圖2,線段所在直線的位置關(guān)系為 ,線段的數(shù)量關(guān)系為 ;
②當(dāng)點在線段的延長線上時,如圖3,①中的結(jié)論是否仍然成立,并說明理由;
(2)如果,是銳角,點在線段上,當(dāng)滿足什么條件時,(點不重合),并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點均在格點上,
①寫出A、B、C的坐標(biāo).
②以原點O為對稱中心,畫出△ABC關(guān)于原點O對稱的△A1B1C1,并寫出A1、B1、C1的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點E是正方形ABCD的邊DC上一點,把△ADE順時針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)角度是 度;
(2)若連結(jié)EF,則△AEF是 三角形;并證明;
(3)若四邊形AECF的面積為25,DE=2,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com