科目: 來源: 題型:
【題目】如圖,已知直線y=x﹣3與雙曲線y=(k>0)交于A、B兩點,點A的縱坐標為1.
(1)求點B的坐標;
(2)直接寫出當x在什么范圍內(nèi)時,代數(shù)式x2﹣3x的值小于k的值;
(3)點C(2,m)是直線AB上一點,點D(n,4)是雙曲線y=上一點,將△OCD沿射線BA方向平移,得到△O′C′D′.若點O的對應點O′落在雙曲線y=上,求點D的對應點D′的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,四邊形ABCD各頂點的坐標分別為A(2,6),B(4,2),C(6,2),D(6,4),
①在第一象限內(nèi),畫出以原點為位似中心,相似比為的位似圖形A1B1C1D1;
②將四邊形A1B1C1D1向右平移5個單位長度,再向上平移4個單位長度,并寫出各點坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=(x>0)與正比例函數(shù)y=x(x≥0)的圖象,點A(1,4),點A'(4,b)與點B'均在反比例函數(shù)的圖象上,點B在直線y=x上,四邊形AA'B'B是平行四邊形,則B點的坐標為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,點E是BC的中點,AE與BD交于點P,F是CD上一點,連接AF分別交BD,DE于點M,N,且AF⊥DE,連接PN,則以下結(jié)論中:①F為CD的中點;②3AM=2DE;③tan∠EAF=;④;⑤△PMN∽△DPE,正確的結(jié)論個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目: 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,AD是△ABC的中線,∠ADC=45°,把△ADC沿AD對折,使點C落在C′的位置,C′D交AB于點Q,則的值為( 。
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】由兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤、每個轉(zhuǎn)盤被分成如圖所示的幾個扇形、游戲者同時轉(zhuǎn)動兩個轉(zhuǎn)盤,如果一個轉(zhuǎn)盤轉(zhuǎn)出了紅色,另一轉(zhuǎn)盤轉(zhuǎn)出了藍色,游戲者就配成了紫色下列說法正確的是( 。
A. 兩個轉(zhuǎn)盤轉(zhuǎn)出藍色的概率一樣大
B. 如果A轉(zhuǎn)盤轉(zhuǎn)出了藍色,那么B轉(zhuǎn)盤轉(zhuǎn)出藍色的可能性變小了
C. 先轉(zhuǎn)動A 轉(zhuǎn)盤再轉(zhuǎn)動B 轉(zhuǎn)盤和同時轉(zhuǎn)動兩個轉(zhuǎn)盤,游戲者配成紫色的概率不同
D. 游戲者配成紫色的概率為
查看答案和解析>>
科目: 來源: 題型:
【題目】矩形對角線的四等分點叫做矩形的奇特點.如圖,在平面直角坐標系中,點,為拋物線上的兩個動點(在的左側(cè)),且軸,以為邊畫矩形,原點在邊上.
(1)如圖1,當矩形為正方形時,求該矩形在第一象限內(nèi)的奇特點的坐標.
(2)如圖2,在點,的運動過程中,連結(jié)交拋物線于點.
①求證:點為矩形的奇特點;
②連結(jié),若,拋物線上的點為矩形的另一奇特點,求經(jīng)過,,三點的圓的半徑.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知和均為的等邊三角形,點為的中點,過點與平行的直線交射線于點.
(1)當,,三點在同一直線上時(如圖1),求證:為中點;
(2)將圖1中的繞點旋轉(zhuǎn),當,,三點在同一直線上時(如圖2),求證:為等邊三角形;
(3)將圖2中繞點繼續(xù)順時針旋轉(zhuǎn)多少度時,點恰好第一次位于線段中點,試作出圖形并直接寫出繞點繼續(xù)旋轉(zhuǎn)的度數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】“低碳出行,綠色出行”,自行車逐漸成為人們喜愛的交通工具,寧波某運動商城的自行車銷售量自2016年起逐年增加,據(jù)統(tǒng)計該商城2016年銷售自行車768輛,2018年銷售了1200輛.
(1)若該商城近四年的自行車銷售量年平均增長率相同,請你預估:該商城2019年大概能賣出多少輛自行車?
(2)考慮到自行車需求的不斷增加,本月該商場準備投入3萬元再購進一批兩種規(guī)格的自行車,已知型車的進價為500元/輛,售價為700元/輛,型車的進價為1000元/輛,售價為1300元/輛.根據(jù)銷售經(jīng)驗,型車不少于型車的2倍,但不超過型車的3.2倍,假設所進車輛全部售完,為使得利潤最大,該商場該如何進貨?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com