科目: 來源: 題型:
【題目】已知拋物線頂點在軸負半軸上,與軸交于點,,為等腰直角三角形.
(1)求拋物線的解析式
(2)若點在拋物線上,若為直角三角形,求點的坐標(biāo)
(3)已知直線過點,交拋物線于點、,過作軸,交拋物線于點,求證:直線經(jīng)過一個定點,并求定點的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,點、,將線段繞著原點逆時針方向旋轉(zhuǎn)角度到,連接,將繞著點順時針方向旋轉(zhuǎn)角度至,連接.
(1)當(dāng),時,求的長.
(2)當(dāng),時,求的長.
(3)已知,當(dāng)時,改變的大小,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標(biāo)系后,的頂點均在格點上,三個頂點的坐標(biāo)分別為.
(1)將關(guān)于軸作軸對稱變換得,則點的坐標(biāo)為______.
(2)將繞原點按逆時針方向旋轉(zhuǎn)得,則點的坐標(biāo)為______.
(3)在(1)(2)的基礎(chǔ)上,圖中的,是中心對稱圖形,對稱中心的坐標(biāo)為______.
(4)若以點、、、為頂點的四邊形為菱形,直接寫出點的坐標(biāo)為______.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)45°后得到正方形AB1C1D1,邊B1C1與CD交于點O,則四邊形AB1OD的面積是( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】我們知道:有一內(nèi)角為直角的三角形叫做直角三角形.類似地我們定義:有一內(nèi)角為45°的三角形叫做半直角三角形.如圖,在平面直角坐標(biāo)系中,O為原點,A(4,0),B(-4,0),D是y軸上的一個動點,∠ADC=90°(A、D、C按順時針方向排列), BC與經(jīng)過A、B、D三點的⊙M交于點E,DE平分∠ADC,連結(jié)AE,BD.顯然ΔDCE、ΔDEF、ΔDAE是半直角三角形.
(1)求證:ΔABC是半直角三角形;
(2)求證:∠DEC=∠DEA;
(3)若點D的坐標(biāo)為(0,8),求AE的長;
(4)BC交y軸于點N,問的值是否發(fā)生變化?若不發(fā)生變化,請求出其值;若發(fā)生變化,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線交x軸于A、B兩點,直線y=kx+b經(jīng)過點A,與這條拋物線的對稱軸交于點M(1,2),且點M與拋物線的頂點N關(guān)于x軸對稱.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)題中的拋物線與直線的另一交點為C,已知P(x,y)為線段AC上一點,過點P作PQ⊥x軸,交拋物線于點Q.求線段PQ的最大值及此時P坐標(biāo);
(3)在(2)的條件下,求△AQC面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價不低于成本單價,且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn), 銷售量y(件)與銷售單價x(元)符合一次函數(shù),所調(diào)查的部分數(shù)據(jù)如表:
銷售單價x(元) | 65 | 70 | 80 | … |
銷售量y(件) | 55 | 50 | 40 | … |
(1)求出y與x之間的函數(shù)表達式;
(2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價x之間的關(guān)系式;銷售單價定為多少元時,商場可獲得最大利潤,最大利潤是多少?
(3)銷售單價定為多少元時,該商場獲得的利潤恰為500元?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,△ABC內(nèi)接于⊙O,AF是⊙O的弦,AF⊥BC,垂足為D,點E為上一點,且BE=CF,
(1)求證:AE是⊙O的直徑;
(2)若∠ABC=∠EAC,AE=4,求AC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB為⊙O直徑,AB=12,AD平分∠BAC,交BC于點 E,交⊙O于點D,連接BD.
(1)求證:∠BAD=∠CBD;
(2)若∠AEB=125°,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com