科目: 來源: 題型:
【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),點(diǎn)E為⊙G上一動點(diǎn),CF⊥AE于F.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時針運(yùn)動到點(diǎn)D時,點(diǎn)F所經(jīng)過的路徑長為( 。
A. B. C. D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),與y軸交于點(diǎn)A,拋物線的頂點(diǎn)為D,B(﹣3,0),A(0,)
(1)求拋物線解析式及D點(diǎn)坐標(biāo);
(2)如圖1,P為線段OB上(不與O、B重舍)一動點(diǎn),過點(diǎn)P作y軸的平行線交線段AB于點(diǎn)M,交拋物線于點(diǎn)N,點(diǎn)N作NK⊥BA交BA于點(diǎn)K,當(dāng)△MNK與△MPB的面積相等時,在X軸上找一動點(diǎn)Q,使得CQ+QN最小時,求點(diǎn)Q的坐標(biāo)及CQ+QN最小值;
(3)如圖2,在(2)的條件下,將△ODN沿射線DN平移,平移后的對應(yīng)三角形為△O′D′N′,將△AOC繞點(diǎn)O逆時針旋轉(zhuǎn)到A1OC1的位置,且點(diǎn)C1恰好落在AC上,△A1D′N′是否能為等腰三角形,若能求出N′的坐標(biāo),若不能,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】閱讀下列兩則材料,回答問題
材料一:我們將+與﹣稱為一對“對偶式”因為(+)()=()2=a﹣b,所以構(gòu)造“對偶式”相乘可以將+與﹣中的“”去掉.
例如:已知=2,求+的值,
解:()(+)=(25﹣x)﹣(15﹣x)=10,
∵﹣=2,
∴+=5,
材料二:如圖1,點(diǎn)A(x1,y1),點(diǎn)B(x2,y2),以AB為斜邊作Rt△ABC,則C(x2,y1)AC=|x1﹣x2|,BC=|y1﹣y2|.所以AB=.反之,可將代數(shù)式的值看作點(diǎn)A(x1,y1)到點(diǎn)B(x2,y2)的距離,例如===,所以可將代數(shù)式的值看作點(diǎn)(x,y)到點(diǎn)(1,﹣1)的距離.
(1)利用材料一,解關(guān)于x的方程:=5,其中x≤10;
(2)利用材料二,求代數(shù)式+ 的最小值,并求出此時y與x的函數(shù)關(guān)系式,寫出x的取值范圍;
(3)在(2)的條件下,設(shè)該式子取得最小值時的圖形端點(diǎn)為M、N,直接寫出將y與x的函數(shù)圖象向左平移_____個單位時恰好經(jīng)過點(diǎn)Q(﹣2,),并直接判定此時△MNQ的形狀是______三角形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)D作DE⊥BC交BC于點(diǎn)E,且DE=AD,F為DC上一點(diǎn),且AD=FD,連接AF與DE交于點(diǎn)G.
(1)若∠C=60°,AB=2,求GF的長;
(2)過點(diǎn)A作AH⊥AD,且AH=CE,求證:AB=DG+AH.
查看答案和解析>>
科目: 來源: 題型:
【題目】某商店經(jīng)銷A、B兩種商品,現(xiàn)有如下信息:
信息1:A、B兩種商品的進(jìn)貨單價之和是3元;
信息2:A商品零售單價比進(jìn)貨單價多1元,B商品零售單價比進(jìn)貨單價的2倍少1元;
信息3:按零售單價購買A商品3件和B商品2件,共付12元.
請根據(jù)以上信息,解答下列問題:
(1)求A、B兩種商品的零售單價;
(2)該商店平均每天賣出A商品500件和B商品1500件.經(jīng)調(diào)查發(fā)現(xiàn),A種商品零售單價每降0.1元,A種商品每天可多銷售100件.商店決定把A商品的零售單價下降m(m>0)元,B商品的零售單價和銷量都不變,在不考慮其他因素的條件下,當(dāng)m為多少時,商品每天銷售A、B兩種商品獲取的總利潤為2000元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠A=90°,BC=4cm,點(diǎn)P在△ABC的邊上沿路徑B→A→C移動,過點(diǎn)P作PD⊥BC于點(diǎn)D,設(shè)BD=xcm,△BDP的面積為ycm2(當(dāng)點(diǎn)P與點(diǎn)B或點(diǎn)C重合時,y的值為0).
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小東的探究過程,請補(bǔ)充完整:
(1)自變量x的取值范圍是______;
(2)通過取點(diǎn)、畫圖、測量,得到了x與y的幾組值,如下表:
x/cm | 0 | 1 | 2 | 3 | 4 | ||||
y/cm2 | 0 | m | 2 | n | 0 |
請直接寫出m=_____,n=_____;
(3)如圖2,在平面直角坐標(biāo)系xOy中,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點(diǎn),畫出該函數(shù)的圖象;
(4)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)△BDP的面積為1cm2時,BD的長度約為_____cm.(數(shù)值保留一位小數(shù))
查看答案和解析>>
科目: 來源: 題型:
【題目】距離中考體考時間越來越近,年級組想了解初三年級2400名學(xué)生周末在家體育鍛煉的情況,在初三年級隨機(jī)抽查了20名男生和20名女生周末每天在家鍛煉的時間情況.
(一)收集數(shù)據(jù):(單位:分)
男生:20 30 40 45 60 120 80 50 100 45 85 90 90 70 90 50 90 50 70 40
女生:75 30 120 70 60 100 90 40 75 60 75 75 80 90 70 80 50 80 100 90
(二)整理、描述數(shù)據(jù):(表一)
時間x | x≤30 | 30<x≤60 | 60<x≤90 | 90<x≤120 |
男生 | 2 | 8 | 8 | 2 |
女生 | 1 | 4 | a | 3 |
(表二)兩組數(shù)據(jù)的極差、平均數(shù)、中位數(shù)、眾數(shù)
極差 | 平均數(shù) | 中位數(shù) | 眾數(shù) | |
男生 | 100 | 65.75 | b | c |
女生 | 90 | 75.5 | 75 | 75 |
(三)分析、應(yīng)用數(shù)據(jù):
(1)請將上面兩個表格補(bǔ)充完整:a=_____,b=______,c=______;
(2)請根據(jù)抽樣調(diào)查的數(shù)據(jù)估計初三年級周末每天鍛煉時間在100分鐘以上(含100分鐘)的同學(xué)大約有多少人?
(3)李老師看了表格數(shù)據(jù)后認(rèn)為初三年級的女生周末鍛煉堅持得比男生好,請你結(jié)合統(tǒng)計數(shù)據(jù),寫出支持老師觀點(diǎn)的理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,小明為了測量小河對岸大樹BC的高度,他在點(diǎn)A測得大樹頂端B的仰角為45°,沿斜坡走3米到達(dá)斜坡上點(diǎn)D,在此處測得樹頂端點(diǎn)B的仰角為31°,且斜坡AF的坡比為1:2.
(1)求小明從點(diǎn)A到點(diǎn)D的過程中,他上升的高度;
(2)大樹BC的高度約為多少米?(參考數(shù)據(jù):sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目: 來源: 題型:
【題目】我國的經(jīng)濟(jì)總量已居世界第二,人民富裕了,有的家庭擁有多種車型.小紅家有A、B、C三種車型,已知3輛A型車的載重量與4輛B型車的載重量之和剛好等于2輛C型車的載重量;4輛B型車的載重量與1輛C型車的載重量之和剛好等于6輛A型車的載重量.現(xiàn)有一批貨物,原計劃用C型車10次可全部運(yùn)完,由于C型車另有運(yùn)輸任務(wù),現(xiàn)在安排A型車單獨(dú)裝運(yùn)12次,余下的貨物由B型車單獨(dú)裝運(yùn)剛好可以全部運(yùn)完,則B型車需單獨(dú)裝運(yùn)_____次(每輛車每次都滿載重量)
查看答案和解析>>
科目: 來源: 題型:
【題目】一輛快車從甲地駛往乙地,一輛慢車從乙地駛往甲地,兩車同時出發(fā),勻速行駛.設(shè)行駛的時間為x(時),兩車之間的距離為y(千米),如圖中的折線表示從兩車出發(fā)至快車到達(dá)乙地過程中y與x之間的函數(shù)關(guān)系.已知兩車相遇時快車比慢車多行駛40千米,若快車從甲地到達(dá)乙地所需時間為t時,則t的值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com