已知動點的軌跡是曲線,滿足點到點的距離與它到直線的距離之比為常數(shù),又點在曲線上.
(1)求曲線的方程;
(2)已知直線與曲線交于不同的兩點,求實數(shù)的取值范圍.
(1).(2)得,且
(1)設,且(常數(shù))
在曲線上,

整理,得
(2)由,

解得,且
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

已知△ABC的頂點A(0,-4)、B(0,4),且4(sinB-sinA)=3sinC,則頂點C的軌跡方程是(    )
A.-="1(x>3)                      " B.-=1(x<-7)
C.-="1(y>3)                      " D.-=1(y<-3)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

雙曲線的方程是-y2=1.
(1)直線l的傾斜角為,被雙曲線截得的弦長為,求直線l的方程;
(2)過點P(3,1)作直線l′,使其截得的弦恰被P點平分,求直線l′的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設P(x0,y0)是雙曲線=1上任一點,過P作雙曲線兩條漸近線的平行線分別交另一條漸近線于Q、R兩點,則平行四邊形OQPR的面積為…(    )
A.bB.2abC.abD.4ab

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在相距1000m的F、F兩地聽到炮聲的時間差為2 s(聲速是340m/s),則炮位所在的曲線的軌跡方程是_________。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線=1的右焦點是F,右頂點是A,虛軸的上端點是B,·=6-4,∠BAF=150°.
(1)求雙曲線的方程;
(2)設Q是雙曲線上的點,且過點F、Q的直線l與y軸交于點M,若+2=0,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

與曲線共焦點,而與曲線共漸近線的雙曲線方程為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

以圓錐曲線的焦點弦AB為直徑作圓,與相應準線有兩個不同的交點,求證:

①這圓錐曲線一定是雙曲線;
②對于同一雙曲線, 截得圓弧的度數(shù)為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題




A.
B.
C.
D.大小關系不確定

查看答案和解析>>

同步練習冊答案