精英家教網 > 高中數學 > 題目詳情
設P(x,y)為圓x2+(y-1)2=1上任一點,要使不等式x+y+m≥0恒成立,則m的取值范圍是    
【答案】分析:由圓的方程找出圓心坐標和半徑,依題意得,只要圓上的點都在直線之上,臨界情況就是直線和圓下部分相切,即圓心(0,1)到直線的距離是1,利用點到直線的距離公式得到關于m的方程,求出方程的解,根據圖象判斷符合題意的m的值即可得到使不等式恒成立時m的取值范圍.
解答:解:由圓的方程x2+(y-1)2=1得,圓心(0,1),半徑r=1
令圓x2+(y-1)2=1與直線x+y+m=0相切,
則圓心到直線的距離d=r,即=1,化簡得1+m=±,
即m=-1,m=--1(舍去),
結合圖象可知,當m≥-1時,圓上的任一點都能使不等式x+y+m≥0恒成立.
故答案為:[-1,+∞)
點評:此題考查學生掌握不等式恒成立時所滿足的條件及直線與圓相切時所滿足的條件,靈活運用點到直線的距離公式化簡取值,靈活運用數形結合的數學思想解決實際問題,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設P(x,y)為圓x2+(y-1)2=1上任一點,要使不等式x+y+m≥0恒成立,則m的取值范圍是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設P(x,y)為圓x2+(y-1)2=1上任意一點,欲使不等式x+y+m≥0恒成立,則m的取值范圍是什么?

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C:x2+y2-4x+2y+1=0,直線l:y=kx-1.
(1)當k為何值時直線l過圓心;
(2)是否存在直線l與圓C交于A,B兩點,且△ABC的面積為2?如果存在,求出直線l的方程,如果不存在,請說明理由;
(3)設P(x,y)為圓C上一動點,求
y+3x+1
的最值.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省寧德市高一(上)期末抽考數學試卷(解析版) 題型:解答題

已知圓C:x2+y2-4x+2y+1=0,直線l:y=kx-1.
(1)當k為何值時直線l過圓心;
(2)是否存在直線l與圓C交于A,B兩點,且△ABC的面積為2?如果存在,求出直線l的方程,如果不存在,請說明理由;
(3)設P(x,y)為圓C上一動點,求的最值.

查看答案和解析>>

同步練習冊答案