已知離心率為e=2的雙曲線C:,雙曲線C的右焦點(diǎn)關(guān)于直線x+y+=0的對稱點(diǎn)在雙曲線C的左準(zhǔn)線上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)過點(diǎn)M(5,0)的直線l與雙曲線C交于A、B兩點(diǎn),交y軸于N點(diǎn),當(dāng)=λ=μ,且=3時,求直線l的方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:天利38套《2008全國各省市高考模擬試題匯編 精華大字版》、數(shù)學(xué)文 精華大字版 題型:044
已知離心率為e=2的雙曲線,雙曲線C的右焦點(diǎn)關(guān)于直線的對稱點(diǎn)在雙曲線C的左準(zhǔn)線上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)過點(diǎn)M(5,0)的直線l與雙曲線C交于A、B兩點(diǎn),若,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:陜西省五校2012屆高三第二次模擬考試數(shù)學(xué)理科試題 題型:044
已知橢圓C:+=1(a>b>0)的離心率為e=,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線x-y+2=0相切,A,B分別是橢圓的左右兩個頂點(diǎn),P為橢圓C上的動點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若P與A,B均不重合,設(shè)直線PA與PB的斜率分別為k1,k2,證明:k1·k2為定值;
(Ⅲ)M為過P且垂直于x軸的直線上的點(diǎn),若=λ,求點(diǎn)M的軌跡方程,并說明軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:陜西省五校2012屆高三第二次模擬考試數(shù)學(xué)文科試題 題型:044
已知橢圓C:+=1(a>b>0)的離心率為e=,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線x-y+2=0相切,A,B分別是橢圓的左右兩個頂點(diǎn),P為橢圓C上的動點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若P與A,B均不重合,設(shè)直線PA與PB的斜率分別為k1,k2,證明:k1·k2為定值;
(Ⅲ)M為過P且垂直于x軸的直線上的點(diǎn),若,求點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:山西省山大附中2012屆高三下學(xué)期2月第二次月考數(shù)學(xué)理科試題 題型:044
已知離心率為的橢圓,左、右焦點(diǎn)分別為F1(-c,0)、F2(c,0),M,N分別是直線上的兩上動點(diǎn),且·=0,||的最小值為2.
(Ⅰ)求橢圓方程;
(Ⅱ)過定點(diǎn)P(m,0)的直線交橢圓于B,E兩點(diǎn),A為B關(guān)于x軸的對稱點(diǎn)(A,P,B不共線),問:直線AE是否會經(jīng)過x軸上一定點(diǎn),并求AE過橢圓焦點(diǎn)時m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com